6.2 Importance Sampling

Importance Sampling (Rubinstein, 1981) is a standard technique for estimating the
expected value of a random variable z with distribution d from samples, when the
samples are drawn from another distribution d’. For instance, the target distribution

d could be normal, while the sampling distribution d’ is uniform (see Figure 6.1).

d

4
X

Figure 6.1. Different target and sampling distributions

In its classical form, importance sampling computes the expected value E{z | d}

based on a simple observation:

E4{z} = /xxd(a:) dr = /gﬂx (z) d(z)dr = Ed:{a: d(z) },

d
d'(z) d'(z)

which leads to the importance sampling estimator:

IS = — ind’(x;)’ (6.2)

where x; are samples selected according to d’. This estimator computes the average
of the sample values, where each sample is weighted differently based on the ratio
of its likelihood of occurring under the two distributions. This weighting gives more
importance to samples that occur rarely under the sampling distribution d’ but occur
frequently under the target distribution d. If d and d' are the same, then all the
samples have a weight of 1, and the estimator becomes the usual arithmetic average
of the samples. The importance sampling estimator (6.2) is consistent, meaning that
it converges with probability 1 to E4{z} as the number of samples goes to infinity,
and unbiased, meaning its expected value after any number of samples is also E;{z}

(Rubinstein, 1981).

73

A less known variant of this technique is weighted tmportance sampling, which

d’(wi)

T The weighted impor-

performs a weighted average of the samples, with weights

tance sampling estimator is:

d(z;
iy
n d(z)
=1 d'(z;)

ISW = (6.3)

The weighted importance sampling estimator (6.3) is a consistent but biased estimator
of E{z | d} (Rubinstein, 1981). Nevertheless, his estimator is often faster and more
stable in practice than (6.2). Intuitively, this property is due to the fact that, if an
unlikely event occurs, its weight will be very large, and will cause a large variation
in the classical estimator. In the weighted estimator, the large weight appears in the

denominator as well, and therefore smoothes the variation.

6.3 Applying Importance Sampling to MDPs
In the case of MDPs, the samples come in the form of episodes, which are complete

sequences of states, actions and rewards, ending in a terminal state:

SoQopT181Q172 . .. STm_laTm_ITTmSTm.

The goal is to estimate the state-action value function Q™ (s, a) for a given state s and
action a. Let M be the number of episodes containing state-action pair (s,a) and t,,
be the first time ¢ when (s, a;) = (s,a) in the mth of these episodes. Then we define

the first-visit importance sampling estimate for Q™ (s, a) as

1 M
le(s, a) def Z R, Wy, (6.4)
M m=1
where R,, is the return following (s, a) in episode e,

Ry =1 i1 +9T42+ ..+ T,

74

and w,, is the importance sampling weight assigned to episode m:

def Mty +1 Mty +2 T —1

m — Ce .
btm-l—l btm+2 bTm—l

Here, and in the following sections, we denote by m; = 7(ss, a;) and similarly by =
b(st,as). Similar estimators can be computed for every-visit Monte Carlo as well.
First-visit estimators have the advantage of being unbiased (Singh & Sutton, 1996),
and therefore we will use such estimators in this dissertation.

Similarly, we define the weighted importance sampling estimator (Sutton & Barto,

1998) as
M
ISW def Zm:1 Rpwp,
QW (s,a) & ZmopZmm, (6.5)
Zm:]_ wm
250 450 —
400
RMSE i
over 200f o a0t !
all states H i
and 1 300 't
actions || ; o 1 Ro'\\A/SrE : ||
averaged I N . al stateszs [
over | i<) el and ;
100 MDPs & : Classical Importance Sampling actions 2°[1
100 ¢ i a B [3
[N i averaged i ~
L . i over "0 - .)
100 MDPs B Ten Classical Importance Sampling
o o+ T Tommee 7
50 1 b T e
Weighted Importance Sampling 50 v Weighted Importance Sampling
100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000
Episodes
(a) Uniform Behavior (b) Different Behavior

Figure 6.2. Comparison of classical and weighted importance sampling on 100
randomly generated MDPs. On the left, the behavior policy chose 50-50 from the
two actions. On the right, the behavior policy chose with 20-80 probabilities, exactly
opposite to the target policy. In both cases, the weighted algorithm is faster and
more stable.

5=}

Episodes

Figure 6.3 presents an empirical comparison of the classical and weighted im-
portance sampling estimators. The comparison was performed using 100 different
randomly generated MDPs. Each MDP has 100 states, one of which is terminal.
Two actions were available in each nonterminal state, and each action branched to

four next states, with random probabilities (the partition of unity was selected by

75

picking three random split points uniformly randomly from [0, 1]). The immediate
rewards for each state-action pair were chosen uniformly randomly, between 0 and 1.
The target policy was to select the first action with 80% probability and the second
action with 20% probability. We used two different behavior policies. In the uniform
behavior case (left panel) both actions were equally likely, whereas in the different be-
havior case, the first action was selected with 20% probability and the second action
with 80% probability, resulting in a policy very different from the target policy. The
initial state of each episode was chosen uniformly randomly from the nonterminal
states. All the MDPs terminated with probability 1, so we used v = 1.

Figure 6.3 shows, for each estimator, the root of the total mean squared error be-
tween the estimator and the true action values for the 200 state-action pairs, averaged
over the 100 MDPs. this measure is computed at the beginning of learning, and after
each of the first 1000 episodes. For the weighted importance sampling algorithm,
the graph also includes error bars equal to one standard deviation. For the classi-
cal importance sampling, the maximum standard deviation is on the order of 3000,
therefore we omitted the error bars. This result confirms the fact that the classical
importance sampling algorithm has very high variance, which recommends against
its use in practice. Also, as shown in the figure, the weighted version of the algorithm
is faster and more stable than the classical version. This result was consistent across

all MDPs we experimented with.

6.4 Per-Decision Importance Sampling

Both importance sampling algorithms presented so far require known Markov
behavior policies. They are also inherently Monte Carlo algorithms, because they put
a weight on the total return R,, obtained during an episode. There is no easy way of
implementing either algorithm in an incremental fashion, for instance by performing

TD-like updates after every step of the execution. In order to be able to perform such

76

updates, an algorithm should perform a weighting of each reward r; obtained along
the trajectory followed during the episode.

In this section we present a new algorithm that performs importance sampling
weightings for each decision step along the way. Such a weighting can be computed
if, instead of treating each return as one indivisible sample, we take into account
the fact that the returns come from an underlying MDP. We will focus here on the
Monte Carlo version of the estimator. In the next chapter we present a natural TD
implementation.

In order to justify the estimator, let us examine the term R,,w,, from equations

(6.4) and (6.5): The terms of the sum can be naturally separated into two parts,

one containing the 7 ratios from ¢, 1 to 7 — 1, and one containing the ratios from %
to Tp,_1. Intuitively, the weight on reward r; should not depend on the future after
time ¢, only on the history to that point. This is the idea behind the per-decision

importance sampling estimator:

on qer 1 M To—tm - tm k1
Q " (s,a) = i Z Z Y vk H 3 (6.6)

The estimator weights each reward along a trajectory according to the likelihood of
the trajectory up to that point, under the target and the behavior policy. If the target
and the behavior policy are the same, the estimator is simply the average of the total

returns from each episode. We now show that this estimate is indeed correct:

Theorem 5 The per-decision importance sampling estimator QPP given by (6.6) is

a consistent unbiased estimator of Q™ (s, a).

Proof: We know that the classical importance sampling estimator Q7 is consistent

and unbiased:

T—t T o
E <27k_17°t+k> H b | st =s5,a; =a,bp =Q"(s,a).
k=1 i

i=t+1

7

We will show that the per-decision importance sampling estimator Q¥'” has the same
expected value as Q'°. Let us move the importance sampling correction inside the

sum, and examine the expectation for the k-th term:

{ Tt+kH |st—sat—ab}

= t—|—1

T Ml

k—1 t+1 t+k—1

= EqY" ik T | Sty Aty - - - Strk—1, Qt4k—1
bey1 beyr—1

Ttk Tr—1
E'{— |st,at,...st+k,at+kab}-

bk br_1

Since the underlying environment is an MDP, the second factor can be re-written as:

Ttk Tr—1
E b—b— | st-l-kaat-i-kab .
t+k T—1

The expected value of this term is 1. Therefore,

T—t To1
E (Z vklrt+k> H b—z | sy =s5,0, = a,bp =
k=1 i

i=t+1
Tt k-1
k— _
E27 rt+kH .|st—sat—a,b,
k=1 ii41 i

which concludes the proof. ¢

We can also devise a weighted version of the per-decision importance sampling
algorithm. The reason for such a version is to smooth out large variations in the
updates, if unlikely events happen. The idea is simply to divide the estimator by the
sum of the weights during each episode:

Ty —t 1 mtk—1 m;
defz 1Zm " Ttm‘i‘kHZ tm+1 b;

Trm—t 1 77tm+Ek—1 m;
1Zm ™ k= Hzmtm—i—l b

Q"W (s,a) = (6.7)

This weighted per-decision importance sampling estimator is consistent but biased,

just like the weighted importance sampling estimator Q"W .

78

450

250 T T T T T T T T T T T T T T
§
i
a0l J
M
200 N 1 "
AN RMSE *f]
B RS LK}
! N OVer ool i) , 1
i .. all states 1 1Classical Importance Sampling
RMSE 150 | i e 1 and v
! .~ Y
over \ W DR actions 2201 HE 1
all states § . Classical Importance Sampling™ averaged N
and I 1 over Eoa ~]
actions 100 4, ;! 1 100MDPs ||
averaged s, s , 150 g, ! s - .
over . N RCR TP } ,,‘\..‘: '-v-‘.‘__E’er-Deuswn Imponlance Sampling
100 MDPs | * Per-Decision Importance Sampling 1000 4 B S
. A TSt el
%0 weighted Per-Decision Importance Sampling | Foms! FT TN s ~ i '
l NP 50 Weighted Per-Decision Importance Sampling{
))) . Weighted Importance Sar-'qp;ling_ o , . . . Weighted Importance Sampling
% 900 200 800 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Episodes
(a) Uniform Behavior

Episodes
(b) Different Behavior

Figure 6.3. Comparison of Classical (Per-Return) and Per-Decision Monte Carlo
Importance Sampling Algorithms

Figure 6.4 presents an empirical comparison of the per-decision algorithms with
the classical (per-return) version, on the same testbed of 100 randomly generated
MDPs (described in detail in section 6.3). The error measure is again the root of
the total mean squared error for all the state-action pairs, averaged over the 100
MDPs. For the weighted per-decision algorithm, we also show error bars equal to one
standard deviation. The standard deviation for the unweighted per-decision was on
the order of 100 in the uniform behavior case (left panel) and on the order of 500 in
the different behavior case (right panel). Since the weighted per-decision estimator
has significantly smaller variance and more stable behavior, we recommend its use
instead of the unweighted version, even though it is not consistently faster (as seen

in the left panel).

6.5 Conclusions

In this chapter we presented Monte Carlo algorithms for policy evaluation, based
on importance sampling corrections. One of the algorithms is a straightforward ap-
plication of importance sampling. The other algorithm, per-decision importance sam-
pling, is a new method, which takes into account the fact that the reward samples

come from an MDP. We have shown that per-decision importance sampling algorithm

79

