I N Proceedings of the Twentieth National Conference on Artificial Intelligence,
Pi ttsburgh, PA, July 2005.

Value Functions for RL-Based Behavior Transfer: A Compar ative Study

Matthew E. Taylor, Peter Stone, and Yaxin Liu
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188
{mtaylor, pstone, yxli@cs.utexas.edu

Abstract Value-based TD methods learn to estimatalue function

_ _ for each possible state. The learner is then able to select th
Temporal difference (TD) learning methods (Sutton & Barto action which it believes will return the highest value in kbeg
1998) have become popular reinforcement learning tecksiqu yn Qver time the learned value function approaches tfee tru
in recent years. TD methods, relying on function approxima- ya|ye of each state by comparing the expected value of a state
tors to generalize learning to novel situations, have hadeso \yith the actual value received from that state. Value-bagd
expgrlmental successes and have been shown to exhibit somg,ethods typically utilize dunction approximatoso that the
desirable properties in theory, but have often been fouadt sl \/5)e function can be approximated for novel situationss Th
in practice. This paper presents methods for further gémera gnnhroximation becomes critical as the number of situatioas
ing across tasksthereby speeding up learning, via a novel form agents could be in grows, or becomes infinite.
of behavior transfer We compare leaming on a complex task- =}, this paper we study the effect béhavior transfer(Tay-
with three function approximators, a CMAC, a neural network |5 o Stone 2005) on the learning rates of value-based TD
and an RBF, and demonstrate that behavior transfer works Wel|eamers' Behavior transfer allows a TD learner trained on
with all three. Using behavior transfer, agents are ableaorl 46 ta5k to learn significantly faster when training on aeoth
one task and then markedly reduce the time it takes to learn dask with related. but different. state and action spacess T
more complex task. Our algorithms are fully implemented and 1\ athod is more éeneral than the previously referenced meth-

tested in the RoboCup-soccer keepaway domain. ods because it does not preclude the modification of theitrans
) tion function, start state, or reward function. We will coang@
Introduction the efficacy of using behavior transfer to speed up learning

Temporal difference learning methods (Sutton & Barto 199- : ;
A - AC, a neural network, and an RBF, on a single reinforce-
have shown some success in different reinforcement legrn ent learning problem.

tasks because of their ability to learn where there is lichit ; . . .
prior knowledge and minimal environmental feedback. How- '€ key technical challenge of behavior transfer is mapping

ever, in practice, current TD methods are somewhat slowdd/2lue function in one representation to a meaningful value
function in another, typically larger, representationeThap-

produce near-optimal behaviors. Many techniques existhwvhi = "™~" v d g oth th k and the f
attempt to speed up the learning process. ping Is necessarily dependent on both the task and the func-
For example, Selfridge et al. (1985) usgicected training tion approximator’s representation of the value functiont

to show that a learner can train faster on a task if it has fi posit that the behavior transfer technique will be applic
learned on a simpler variation of the task. In this paradigen t E to multiple tasks and function approximators. This pape

state transition function, which is part of the environmean establishes that behavior transfer is general enough t& wor

change between tasksearning from easy missiorgdsadaet effectwelly Wt:/tvh mkqltlpl((ja df.ltj.nCt'to” a%ﬁ)\z%%m_?aqrs, n pmm:ar di

al. 1994) is a technique that relies on human input to modifgnﬁura networ tI’IIn aﬁ. ition (f) aCMAC : dls paperlas;) I-k

the starting state of the learner over time, making it ina@em Ctﬁ/ compares F el|cacy 0 ta K and a neural networ

tally more difficult for the learner. Both of these methods r&" € Same compiexiearning task.

duce the total training time required to successfully l¢am ;

final task. However, neither allow for changes to the state or Behavior Transfer Methodology

action spaces between the tasks, limiting their appliggbil To formally define behavior transfer we first review the rein-
Reward shapin¢Colombetti & Dorigo 1993; Mataric 1994) forcement learning framework that conforms to the gengrall

allows one to bias a learner’s progress through the statespaccepted notation for Markov decision processes (Puterman

by adding in artificial rewards to the environmental reward$994). There is a set of possible perceptions of the current

Doing so requires sufficient knowledge about the envirortmestate of the worldS, and a learner has an initial starting state,

a priori to guide the learner and must be done carefully $.::i1.:. When in a particular state there is a set of actions,

avoid unintended behaviors. While it is well understood how, which can be taken. The reward functiéhmaps each

to add this type of guidance to a learner (Ng, Harada, & Ryserceived state of the environment to a single number which

sell 1999), we would prefer to allow the agent to learn fasttsrthe instantaneous reward for the state. The transitino-fu

by training on different (perhaps pre-existing) taskseathan tion, 7', takes a state and an action and returns the state of the

creating easier, artificial tasks. environment after the action is performed. If transitions a

non-deterministic the transition function is a probabpitiis-
Copyright(© 2005, American Association for Atrtificial Intelligencetribution function. A learner is able to senseand typically
(www.aaai.org). All rights reserved. knows A, but may or may not initially knov$, R, orT'.

ﬁagents that utilize three different function approxiorat a

A policy = : S — A defines how a learner interacts with Keepaway a subproblem of RoboCup soccer, is the chal-
the environment by mapping perceived environmental statesge where one team, theepersattempts to maintain pos-
to actions.w is modified by the learner over time to improvesession of the ball on a field while another team, thdeers
performance, i.e. the expected total reward, and it coralyietattempts to gain possession of the ball or force the ball but o
defines the behavior of the learner in an environment. In theunds, ending agpisode Keepers that make better decisions
general case the policy can be stochastic. The success oélaout their actions are able to maintain possession of the ba
agent is determined by how well it maximizes the total rewaldnger and thus have a longer average episode length. Figure
it receives in the long run while acting under some policy depicts three keepers playing against two takers.
An optimal policy, 7*, is a policy which does maximize this As more players are added to the task, keepaway be-
value (in expectation). Any reasonable learning algorititm comes harder for the keepers because the field becomes more
tempts to modifyr over time so that the agent’s performancerowded. As more takers are added there are more players
approaches that of*. to block passing lanes and chase down any errant passes. As

In this paper we consider the general case wisere So, more keepers are added, the keeper with the ball has more
and/orA; # A, for two tasks. To use the learned policy fronpassing options but the average pass distance is shortisr. Th
the first task;m(1 fina1), @s the initial policy for a TD learner reduced distance forces more passes and often leads to more
in a second task, we must transform the value function so tlestors because of the noisy actuators and sensors. Foehis r
it can be directly applied to the new state and action spaces@n keepers in 4 vs. 3 keepaway (i.e. 4 keepers and 3 takers)
behavior transfer functional(r) will allow us to apply a pol- take longer to learn an optimal control policy than in 3 vs. 2.
icy in a new task. The policy transform functionaheeds to The hold time of the best policy for a constant field size also
modify the policy and its associated value function so thatdecreases when adding an equal number of keepers and takers.
acceptsS; as inputs and allows fad, to be outputs. A policy The time it takes to learn a policy which is near a handcoded
generally selects the action which is believed to accuraulg&blution roughly doubles as each additional keeper and take
the largest expected total reward; the problem of transfogm is added (Stone, Sutton, & Kuhimann 2005).
a policy between two tasks reduces to transforming the value .
function. In this paper we will therefore concentrate omgra L earning Keepaway
ferring the state action values, Q, from one learner to aot he kee e

-3 - : pers use episodic SMDP Sak3gSutton & Barto

gD(aeglg:glgbpeﬁg(/rig(r:ttl?lalr?s;[‘gre key technical challenge to enab 98), a well understood temporal difference algorithm, to

One measure of SUCCESS in Speed learn their task. In one implementation, we use linear tile-
: learning using. this me{;]od coding function approximation, also known as CMACs, which
!nghup \ 9 p 9 b has been successfully used in many reinforcement learning
Is that given a policyr(, finar), the systems (Albus 1981). A second implementation of our agents

training time for, to reach some WA use neural networks, another method for function approxima
performance threshold ~decrease + tion that has had some notable past successes (Crites & Barto
when replacing the initial policy in ’ 1996; Tesauro 1994). The third implementation uses a ra-
task 2,7z, initiar) » With p(m(1, finar))- W dial basis function (RBF) (Sutton & Barto 1998). The keep-
This criterion is relevant when task \ﬁ’ ers choose not from primitive actions (turn, dash, or kick)

1 is given and is of interest in its Sk but higher-level actions implemented by the CMUnited-99

own right or if m fine) Can be Figure 1: This diagram depicts team (Stone, Riley, & Veloso 2000). A keeper without the ball
used repeatedly to speed up multiplfe 13 state varables used for g jtomatically attempts to move to an open area (the receive
related tasks. A stronger measure Qiicre there are 11 deances@Ction). A keeper in possession of the ball has the freedom to
success is that the training time fofo players and the center of the decide whether to hold the ball or to pass to a teammate.
both tasks using behavior transfer igeld, aswellas 2anglesalong Qur CMAC and RBF agents are based on the keepaway
shorter than the training time to learrpassing lanes. benchmark players distributed by UT-Austiwhich are de-
the second task from scratch. This scribed in (Stonet al. 2005). These benchmark players are
criterion is relevant when task 1 is created for the sole @s&p pyjit on the UvA Trilearn team (de Boer & Kok 2002) and the
of speeding up learning via behavior transfer aidyina) IS CMUnited-99 team (Stone, Riley, & Veloso 2000), whereas
not reused. previous publications (Stone, Sutton, & Kuhlmann 2005) and
. our neural network players are built on the CMUnited-99 play
Testbed Domain ers alone. The newer benchmark players have better low-leve
To test the efficacy of behavior transfer with different fundunctionality and are thus able to hold the ball for longerth
tion approximators we consider the RoboCup simulated s¢@e CMUnited-99 players, both before and after learning, bu
cer keepaway domain using a setup similar to past tBe learning and behavior transfer results are very sirbar
search (Stone, Sutton, & Kuhimann 2005). RoboCup sithe older players.
ulated soccer is well understood as it has been the basis dEMACs allow us to take arbitrary groups of continuous state
multiple international competitions and research chgken variables and lay infinite, axis-parallel tilings over thésee
The multiagent domain incorporates noisy sensors and adtigure 2). Using this method we are able to discretize the
ators, as well as enforcing a hidden state so that agents cantinuous state space by using tilings while maintainireg t
only have a partial world view at any given time. While presapability to generalize via multiple overlapping tilingshe
vious work has attempted to use machine learning to learumber of tiles and width of the tilings are hardcoded angl thi
the full simulated soccer problem (Andre & Teller 1999ictates which state values will activate which tiles. Taed-
Riedmilleret al. 2001), the complexity and size of the problertion approximation is learned by changing how much each tile
have proven prohibitive. However, many of the RoboCup sub-
Pf0b|em3_ have been |_30|ated and SO|Ved_ using machine Iearn:"Flash file demonstrations, source code, documentation,naailing list can be
ing techniques, including the task of playing keepaway. found athttp://www.cs.utexas.edu/users/AustinVilla/sim/keegy!

contributes to the output of the function approximator. By dthe episode starts, the three keepers attempt to keep tohtro
fault, all the CMAC's weights are initialized to zero. Thig-a the ball by passing amongst themselves and moving to open
proach to function approximation in the RoboCup soccer dpesitions. The keeper with the ball has the option to either

main is detailed by Stone and Sutton (2002). pass the ball to one of its two teammates or to hold the ball. In
An RBF is a generalization of this taskA = {hold, passToTeammatel, passToTeamnjate2
the tile coding idea to a contin- ~—mmgn S js defined by 13 state variables, as shown in Figure 1. When

uous function (Sutton & Barto
1998). In the one-dimensional

nngs2 @ taker gains control of the ball or the ball is kicked out of
the field’s bounds the episode is finished. The reward to the

nsion #2

case, an RBF approximator is g : Sarsal) algorithm for the keeper is the number of time steps
a linear function approximator © the ball remains in play after an action is taken. The episode
f(z) = S w; f;(z), where the is then reset with a random keeper placed near the ball.
ggﬁs fu%:étilgﬁjg(ﬁgve the form Dimension #1 _ All weights in the CMAC function approximator are ini-
fi(z) = ¢(z — cil), 7 iS the Figuwe 2 Tiecoding feature sets 1AIY SELO zero. Similarly, all weights and biases in tieain

current state, and; is the cen- are formed from multiple overlapping ral network are set to Sma”_random n_umbers. . We use a 13-
ter of featurei. A CMAC tiings and state variables are used t020-4 network Wherezthe choice of 20 hidden unhlts was r<]:hosfen
is a degenerate case of RBFetermine the activated tile in each of via experimentation As training progresses, the weights o

a roxir%ator withe.’s equally e different tiings. Every activated the function approximator are changed by Sarya¢ that the

pp Ci q . Y tile contributes a weighted value to the hold ti f the k . Th h hi

spaced ane(z) a step function. total output of the CMAC for the given 2VET@ge Nold time of the keepers increases. Throughout this
Here we use Gaussian radial bastate. Increasing the number of tiings Process, the takers use a static hand-coded policy to dttemp
sis functions, wherep(z) = allows better generalization while de- to Capture the ball as quickly as possible. Policy evalmaso

2 , creasing the tile size allows more ac-yary noisy do to high environmental randomness.
exp(—ﬁ), and the same;’s as curate representations of smaller de-

a CMAC. The learning for RBF gt (o8 i Ce i e, L €arning 4vs. 3
networks is identical to that for pies apply in the n-dimensional case. Holding the field size constant we now add an additional
CMACs except for the calcula- keeper and an additional takerR and T' are essentially
tion of state-action values where the RBFs are used. Asyischanged from 3 vs. 2 keepaway, but nev= {hold,
the case for CMACs, the state-action values are computed gadsToTeammatel, passToTeammate2, passToTeammate3
sum of one-dimensional RBFs, one for each feature. By tuihds is made up of 19 state variables due to the added players.
ing o, the experimenter can control the width of the Gaussige 4 vs. 3 task is harder and the learned average hold fimes
function and therefore the amount of generalization over thfter 20 hours of training with a CMAC function approximator
state space. In our implementation, a valuerof 0.25 cre- |earning from scratch decrease by roughly 32% from 3 vs. 2 to
ates a Gaussian which roughly spans 3 CMAC tiles. We trigd/s. 3. The neural network used is a 19-30-5 network, where
3 different values for this parameter but more tuning mayehaghe use of 30 hidden units was chosen under the assumption
reduced our learning times. . o that the 4 vs. 3 task is more complex than the 3 vs. 2 task,
The neural network function approximator likewise allowghich had fewer inputs, hidden units, and outputs.
alearner to select an action given a set of state variablsh E |, order to quantify how fast an é\gent in 4 vs. 3 learns
input to the neural network is set to the value of a state vafjs get 5 target performance of 9.0 seconds for CMAC and
able and each output corresponds to an action. The legal g&qral network learners, while RBF learners have a target of
tion with the highest activation is selected. We use a feeffy 5 seconds. Thus, when a group of four CMAC keepers
forward network with a single hidden layer built with the ASy 55 jearned to hold the ball for an average of 9.0 seconds over
pirin/MIGRANES 6.0 framework. Nodes in the hidden layef nog episodes we say that the keepers have learned the 4 vs.
have a sigmoid transfer function and output nodes are lineglasy This threshold is chosen so that all trials need tmlea
The network is then trained using standard backpropogatigf} some nonzero amount of time and the majority of trials are
modifying the weights connecting the nodes. To our knowlpe to reach the threshold before learning plateaus; secau
edge, this work presents the first application of a function ahe RBF learners learn more quickly, they required a higher
proximator other than a CMAC in the keepaway domain. target performance. Note that our behavior transfer result
For the purposes of this paper, it is particularly importafp|q for other (higher) threshold times as well. By averagin

to note the state variables and action possibilities usetti®y oyer many trials we can measure the effectiveness of legirnin
learners. The keepers’ states comprise distances andsafglg, different situations.

the keeperd(; — K,, the takersly — T;,, and the center of
the playing region C (see Figure 1). Keepers and takers are Behavior Transfer in Keepaway

ordered by increasing distance from the ball. Note that as 1i_he ; . :
: arning on one task and transferring the behavior to a sepa-
number of keepens and the number of takeraincrease, the useful task can reduce the training time. In the keepawa

C . e
number of state variables also increase so that the more cQi=. _: f
plex state can be fully described must change (e.g. thereé%t\‘naln,A andS are determined by the current keepaway task

are more distances to players to account for)|ahjdncreases and thhufs():jr:]ff;”r f&?&;gﬁ:agéeeﬁe'gtfcgrC?;r%g‘tlé’nfé (sgg:l’;s
as there are more teammates for the keeper with possesgj %S andA ghan eo. R andl ghan e by definition
of the ball to pass to. Full details of the keepaway dom 9€5initial, [, ge by :

d ; o t in practice,R is always defined as 1 for every time step
and a player implementation similar to ours are documen ’ L ; ,
elsewhere (Stone, Sutton, & Kuhlmann 2005). t the keepers maintain possession, &g, andT" are

always defined by the RoboCup soccer simulation.
Learning 3vs. 2 —_—
. .. . Five different network sizes were tested, from 15 to 25 hiddedes and the differ-
On a 25m x 25m field, three keepers are initially placed iices in performance were very small.

three corners of the field and a ball _iS placed near one of theE'Again, other networks with different numbers of hidden sinitere tried, but the
keepers. The two takers are placed in the fourth corner. Whefarences in learning times were not significant.

In the keepaway domain we are able to intuit the mappin8wvs. 2 into similar actions and states in 4 vs. 3, following th
between states and actions in the two tagkdased on our same schema as iy ac-
knowledge of the domain. Our choice for the mappings is sup-Constructing

ported by empirical evidence showing that using thith ... is Partial Description opmc

behavior transfer decreases training time. Other domaihs imilarly R o e 505 2 St vaTabie
A - . " i 1, ist(K1,C)

not necessarily have such straightforward transforms detw intuitive. dzsthb c; dzstEK27 c;

tasks of different complexity. Finding a general method the 13-20- g;ﬁﬁi(ﬁSvg) jj‘::(g&g)

. . . N - . St 4, L2 < 3
specify p is outside the scope of this paper and will be fo# network is Min(dist (Ko T1), dist(Ka, T2), | Min(dist(Ka 11,
mulated in future work. One of the main future challengegigmented | dist(K>,Ts)) , dist(K2, T2))
will be identifying general heuristics for mapping statesla by adding | Min(@s!(Ks). dist(Ks. 7o), | Min(list(Ks T0).
actions between two related tasks. A primary contributibn 8 inputs, | Min(dist(Ka,T:), dist(Ka,Ts), | Min(dist(Ks.T1),
this paper is demonstrating that there exist domains and fud0 hidden [dist(Ka.Ts)) dist(Ks, T))
tion approximators for whiclp can be constructed and therhidden Table 1: This table describes part of the,, . transform in keep-
used to successfully decrease learning times. nodes, and away. We denote the distance between a anddiat{a, b). Rele-

. . . . vant points are the center of the fi€lt] keeperd<; - K4, and takers
The naive approaCh of dlrectly using the value function froth output T1-T3. Keepers and takers are ordered in increasing distance from

T(3vs2,final) fails becauseS and A have changed. Keeping innOC}le- The the ball and state values not presentin 3 vs. 2 are in bold.

mind thatr : S — A, we see that the new state vectors whiciyeights) _
describe the learner’s environment would not necessasly gonnecting inputs 1-13 to hidden nodes 1-20 are copied over
correctly used, nor would the new actions be correctly evafiiom the 13-20-4 network. Likewise, the weights from hidden
ated by (sye2 finan- TO Use the learned policy we modify ithodes 1-20 to outputs 1-4 are copied over. The new weights
to handle the new actions and new state values in the secBfjvéen the input and hidden layers, i.e. those not present
task so that the player can reasonably evaluate them. momethle?)ﬁg:tl '[T)e:]\%odrléh ?;?/:rm'lzﬂ(;[hnee\?vvvevreailgﬁtlse&rar:vevgg\;]etlggt
ti ozhfng'?Qﬁr;i”fﬁggfﬁgf’eﬂr?ﬂgrtg\,'f,g?d"’_‘ s{_%tg g;?n%r; den and output layers are set to the average learnedtseigh

; . the hidden to output layer. Every weight in the 19-30-5
evaluate each potential action for the current state anal t - P ;
user to choose one. We Constructa,... and utilize it so twork is set to an initial value based on the trained 13+20-

; - : . etwork. Because,,,.; copies the average into the weights
mg;greeﬂgﬁé?gubtﬁ ﬁf]gtségdagg)ir;ﬂt{;g”\/gg(ljghts fothe a(frug/atﬁom the input to hidden layer, it is in some sense simplentha
accomplish this. we cony weidhts from th?gfeszcmgh woull mac, Which initializes the weights for the new state variables

p » We copy weigr : . voulgh'Similar old state variables. We explore this simplgk,..

be activated for a similar actionin 3 vs. 2 into the tiles\zated . suggest that there are multiple ways to formujat&uture
for every new action in 4 vs. 3. The weights corresponding {4 “\ill attempt to determine a priori what type pfwill
the tiles that are activated for the “pass to teammate 2bactiy;q hest for a given function approximator and pair of tasks
are copied into the weights for the tiles that are activated t Having constructedps which handle the new states
_e\(a_lluate the “pass to teammate 3" actioNyus3, initial) W_'" and actions for function approximators, we can now set
initially be unable to distinguish between these two action T(4vs3.initial) = P(T(3us2.inap)) TOT all three sets of agents.

To handle new state variables we follow a similar strategye do not claim that these initial value functions are cdrrec
The 13 state variables which are presentin 3 vs. 2 are alregglyq empirically they are not), but instead that they allbe t

handled by the CMAC’s weights. The weights for tiles actiparers to more quickly discover a near-optimal policy.
vated by the six new 4 vs. 3 state variables are initialized to

values of weights activated by similar 3 vs. 2 state vargble Results and Discussion
For instance, weights which correspond to “distance to team In Tables 2 and 3 we see that

mate 2" values in the state representation are copied igto tho\AC Learning Results a CMAC, an RBF, and a neu-

weights for tiles corresponding to “distance to teammate Sfor3vs Zave avs 3 Ave ol | ral network successfully allow
state values. This is done for all six new state variablesa As ep'godes time 5(2%“5 t'melggtém) independent players to learn to
final step, any weights which have not been initialized ate e 1229 1229 | hold the ball from opponents
to the average value of all initialized weights. This exteps 0 10.06 1008 | when learning from scratch.
provides an larger benifit when fewer 3 vs. 2 episodes are usedpg 402 2429 However, the training times for
and is studdied elsewhere (Taylor & Stone 2005). The 3 vg. 2250 3.77 4.3 agents that use neural networks
P ; ; " 500 3.99 5.05 g

training was not exhaustive and therefore some weightstwhic 1gq0 372 585 is significantly longer? Previ-
may be utilized in 4 vs. 3 would otherwise remain uninitial- 3000 242 11041 0 s research has shown that a
ized. Tiles which correspond to every value in the new 4 Vs. 15000 124 9801 | CMAC function approximator

3 state vector have thus been initialized to values detethin_ —— =~~~

via training in 3 vs. 2. See Table 1 for examples. Identifying, yeepaway with > oA amg apply- ivﬁatshigbch%rﬁoai%uféfosﬁéu"%’ult?gﬁn
similar actions and states between two tasks is essentialif@behavior transfer can reduce training & Kuhlmann 2005) bdt to our'
constructinge and may prove to be the main limitation whettime. Minimum leaming times are bold. knowledae no other function
attempting to apply behavior transfer to different domains approxirr?ators had been tested

prBF IS analogous tecy ac. The main difference be- i, keepaway. This work confirms that other function approxi-
tween the RBF and CMAC function approximators are holators can be successfully used and that a CMAC is more effi-
weights are summed together to produces values, but gt than a neural network, another obvious choice. Wet posi

weights have similar structure in both function approxiont ¢ this difference is due to the CMAC’s propertylo€ality.
For a given state variable, a CMAC summs one weight per

tiling. An RBF differs as it sums multiple weights for each™ 4 .

. . s . . Note that these neural network results use an older ver$ittre@gents than used
t"'ng where We'thS are muIt_|pI|ed by the GaUSS|an fumnopy the CMAC or RBF. However, the newer version of the neuraloek players also
¢(z — ¢;). We thus copy weights from actions and states i much slower than the CMAC and RBF players.

Neural Network and RBF Learning Results when compared to training 4 vs. 3 from scratch. Not only is

Fomisodse | awe.3time | ‘torltme | 4ve 3tme | ot fme the time to train the 4 vs. 3 task decreased when we first train

0 39716 397.16 12,07 1207 on 3 vs. 2, but the total training time is less than the time to

» 28355 28327 LS5 780 train 4 vs. 3 from scratch. We can therefore conclude that

100 221.89 222.08 7.53 7.79 in the keepaway domain training first on a simpler task can
20 203 | a2 78 I increase the rate of learning enough that the total traiting
1,000 357.32 359.45 6.90 10.13 is decreased when using a CMAC function approximator.

Table 3: Results from learning keepaway with different antswf 3 vs. 2 training time To verify that the 4 vs. 3 CMAC players were benefiting
(in hours) indicates behavior transfer can reduce traitimg for neural network (9.0 from behavior transfer and not from having non-zero initial
second threshold) and RBF players (10.0 second threshold). weights, we initialized CMAC weights uniformly to 1.0 in one

.]] ~ set of experiments and then to random numbers from 0.0-0.5
When a particular CMAC weight for one state variable is un a second set of experiments. The learning time graater
dated during training, the update will affect the outputrieadf than learning from scratch in both experiments. Haphayardl
the CMAC for other nearby state variable values. The widthitializing CMAC weights may hurt the learner but systemat
of the CMAC tiles determines the generalization effect aneally setting them through behavior transfer is beneficial
outside of this tile width, the change has no effect. Comtras Taple 3 shows the average training time in 4 vs. 3 for differ-
this with the non-locality of a neural network. Every weight ent amount of 3 vs. 2 training using a neural network function
used for the calculation of a value function, regardlessoo¥ h gpproximator. All numbers reported are averaged over at lea
close two inputs are in state space. Any update to a weighB® independent trials. Not only is the 4 vs. 3 training time
the neural network must change the final output of the netwgikeded to reach the 9.0 second target performance reduced by
for every set of inputs. Therefore it may take the neural ngising behavior transfer, but the total training time cao &l
work longer to settle into an optimal configuration. The RBFreduced. A t-test confirms that the difference in total train
function approximator had the best performance of the thrggy times between using behavior transfer and training from
The RBF shares the CMAC's locality benefits, but is also abdgratch is statistically significant when using fewer th&0 5
to generalize more smoothly due to the Gaussian summatipgs o episodes (g 1.2 10~2). Notice that the 4 vs. 3
of weights. When comparing the times of the RBF functiopining time increases as more 3 vs. 2 episodes are added. We
approximator to that of the CMAGC, it is important to note thgigsit this is due to overtraining, as the weights become more
the CMAC was only learning to hold the ball for an average cific to the 3 vs. 2 tagk.Table 3 also has results for the
9.0 secondin 4 vs. 3. For example, when the 4 vs. 3 threshBid" o s “All numbers reported are averaged over at least
is set to 10.0 seconds for the CMAC, behavior transfer fro independent trials: both 4 vs. 3 time and total time can be
1000 3v2 episodes takes 8.41 hours to learn 4 vs. 3, a 44% p ’ :

crease over the time to learn a 9.0 second hold time, and 2 uced with behavior transfer. A t-test confirms tb?t all be
longer than the equivalent RBF 4 vs. 3 training time. Vior transfer results differ from scratch¢p1.4 = 10~°).

: : : We would like to be able to determine the optimal amount
To test tlhe ?ﬁeCt- of using behavior tr?nksfer W'thf a learn ?time needed to train on an easier task to sgeed up a more

g e\;sbfZ 3V avl;e Zure'Cti'Soga ev;e g;'/re] ?hseeﬁ‘uon Ct%%pgrs r(());i(%g?o ffficult task. Determining these training thresholds fasks

weights fr e P) from a random 3 vs. 2 keepgr and us different domains is currently an open problem and will be

9 > (3082, final)) > per, e subject of future research, but our results suggesttikat

the weights to initialize all four keepérsn 4 vs. 3 so that amount of time spent on the first task should be much smaller

P(T(30s2,final)) = T(4vs3,initia)- 1HEN We train on the 4 vs. 3than the amount of time spent learning the second task.

keepaway task until the average hold time for 1,000 episodes

is greater than 9.0 seconds. Note that in our experiments we Related Work

set the agents to have360° field of view although agents do . . . I

also learn with a more realisti)® field of view. Allowing the The concept of seeding a learned behavior with some initial

agents to se60° speeds up the rate of learning and increasgi§Pl€ behavior is not new. There have been approaches to

the learned hold time, reducing data collection time. simplifying reinforcement learning by manipulating thartr
Table 2 reports the average time spent training in 4 vs S#ion function, the agents initial state, and/or the resvainc-

with CMAC players to achieve a 9.0 second average hold ti n, such as directed training (Selfridge, Sutton, & Barto
85), learning from easy missions (Asastaal. 1994), and

for different amounts of 3 vs. 2 training. Column two repor ; : : . ;
: . : ; ward shaping (Colombetti & Dorigo 1993; Mataric 1994),
the time spent training on 4 vs. 3 while the third column sho discussed in the Introduction. The “transfer of learhing

the total time to train 3 vs. 2 and 4 vs. 3. As can be seen fr : : s
PR LS : proach (Singh 1992) applies specifically to temporally se
the table, spending time training in the simpler 3 vs. 2 dom ntial subtasks. The subtasks must all be very similar in

fﬁgr::iause the time learning 4 vs. 3 to decrease. To overc %they have the same state spaces, action spaces, and envi
_ gh amounts of noise in our evaluation we run at least fohment dynamics, although the reward functiomay dif-
Inql%l%elg%eg;[]g\lslsstﬁ)é e%ﬁgﬂ?gﬁaogogggﬁgrﬂﬁghSfer We ufer. While these four methods allow the learner to spend less
a t-test to determine t%at the differences in the distringi ttal time training, they rely on a human modifying the task t

£ 3 training i d total training ti h - create artificial problems to train on. We contrast this voigh
of 2 vs. 5 training imes and total training imes w %qlus'qgaV|or transfer where we allow the state and/or action space
behavior transfer are statistically significant{g5.7 « 10~"") to change between actual tasks. This added flexibility germi
- behavior transfer to be applied to a wider range of domains

SWe do so under the hypothesis that the policy of a single keemeesents all of as well as allowing independent modification of the traaoaiti

the keepers’ learned knowledge. Though in theory the keeqmeid be learning different function, the start state, or the reward function.

policies that interact well with one another, so far thereasvidence that they do. One

pressure against such specialization is that the keegarspssitions are randomized. In 5

earlier informal experiments, there appeared to be somaadjzation when each keeper Such an effect may be due to the particular neural networkagepimplementation
started in the same location every episode. used. We saw a similar effect before when using a CMAC wittk&Jnited-99 players.

In some problems where subtasks are clearly defined by fe@elombetti, M., and Dorigo, M. 1993. Robot Shaping: Devéaigp
tures, the subtasks can be automatically identified (Druntmo Situated Agents through Learning. Technical Report TR38@:
2002) and leveraged to increase learning rates. Learned supternational Computer Science Institute, Berkeley, CA.
routines have been successfully transfered in a hieralat@e Crites, R. H., and Barto, A. G. 1996. Improving elevator perf
inforcement learning framework (Andre & Russell 2002). Bymance using reinforcement learning. In Touretzky, D. S.z#&tp
analyzing two tasks, subroutines may be identified which calf- C.; and Hasselmo, M. E., ed#dvances in Neural Information
be directly reused in a second task that has a slightly modf2'ocessing Systems 8ambridge, MA: MIT Press.
fied state space. For tasks which can be framed in a relatiortg Boer, R., and Kok, J. R. 2002. The incremental developwofent
framework (Dzeroski, Raedt, & Driessens 2001), there is reSynthetic multi-agent system: The uva trilearn 2001 rabsticcer
search (Morales 2003) which suggests ways of speeding Lipnﬁlatllondteam' Master’s thesis, University of Amsterdarhe
learning between two relational reinforcement learnirgigga Neureriands. o ,

Imitation is another technique which may transfer knowl-2rummond, C. 2002. Accelerating reinforcement learningdy-
edge from one learner to another (Price & Boutilier 2003)R°59 f‘loltjtl'lc-’ns of %Jtomatlnc]g[%/gldlegltl|f|ed subtaskiournal of
However, there is the assumption that “the mentor and o wriicial Intefligence Researcho.o39-102. i
server have similar abilities” and thus may not be directly a Dzeroski, S.; Raedt, L. D.; and Driessens, K. 2001. Relation
plicable when the number of dimensions of the state spacgnforcementleamingvachine Leamningl3:7-52. o
changes or the agents have a qualitatively different asgon Fem, A.; Yoon, S.; and Givan, R. 2004. Approximate policy it
Other research (Fern, Yoon, & Givan 2004) has shown that raﬁ'ﬂa W}thBa p%'l'cy (Ijanguage. b'as- '”l Iﬂllr”“v tS Sgul, Ind a
is possible to learn policies for large-scale planning sahiat Sgsger:spia:z;mebr?dge,\/&%el\?l|!PPrglsjsré nformation Frocessing
generalize across different tasks in the same domain. . . ! . :

Another approach (Guestriet al. 2003) uses linear pro- Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N. 20G&n-

: : ; . —.._eralizing plans to new environments in relational mdpsinterna-
gramming to determine value functions for classes of Srrnllational Joint Conference on Artificial Intelligence (IJCAB).

agents. Using the assumption that T and R are Si-m“ar amogﬂataric M. J. 1994. Reward functions for accelerated liearnin
all agents of a class, class-based value subfunctions ate ug -ty =0 et O Machine Learnirg1—189.

by agents in a new world that has a different number of ob- _ . . .

jects (and thus differen§ and A). However, as the authors Morales, E. F. 2003. Scaling up reinforcement learning with

themselves state, the technique will not perform well in hetrelatlonal representation. Froc. of the Workshop on Adaptability
*) o A in Multi-agent Systems

erogeneous environments or domains with “strong and con-

. : - » Ng,A.Y.;Harada, D.; and Russell, S. 1999. Policy invareander
stant interactions between many objects (€.g. RoboCup). reward transformations: Theory and application to rewaapmg.

Conclusions In Proc. 16th International Conf. on Machine Learning

. . . Price, B., and Boutilier, C. 2003. Accelerating reinforeamlearn-
We have introduced the behavior transfer method of speedifgy through implicit imitation.Journal of Artificial Intelligence Re-

up reinforcement learning and given empirical evidencét$or search19:569-629.

usefulness. We have trained CMAC and neural network agen§terman, M. L. 1994. Markov Decision Processes: Discrete
using TD reinforcement learning in related tasks with diffe stochastic Dynamic Programmingohn Wiley & Sons, Inc.

ent state and action spaces and shown that not only is the tiB&.qmiller M- Merke. A.- Meier. D.: Hoffman. A. Sinner A

to learn the final task reduced, but that the total trainin®ti Thate, 0.: and Ehrmann, R. 2001. Karlsruhe brainstormers—a
is reduced using behavior transfer when compared to simplginforcement learning approach to robotic soccer. In &td;
learning the final task from scratch. In the future we will eon Balch, T.; and Kraetszchmar, G., ed®gboCup-2000: Robot Soc-
tinue to explore how to apply behavior transfer to additlonacer World Cup IV Berlin: Springer Verlag.

function approximators. Additionally, we will work on id&n Selfridge, O.; Sutton, R. S.; and Barto, A. G. 1985. Trairamgl
fying tasks that are less directly related to each othertilut s tracking in robotics. Proceedings of the Ninth International Joint

benefit from behavior transfer. Conference on Atrtificial Intelligencg@70-672.
Singh, S. P. 1992. Transfer of learning by composing satstiaf
ACknOWledgmentS elemental sequential taskglachine Learning:323-339.

We would like to thank Gregory Kuhlimann for his help with keep Stone, P.; Kuhimann, G.; Taylor, M.; and Liu, Y. 2005. Keepgiw

away experiments described in this paper as well as Nick,Rag- soccer: From machine learning testbed to benchmarlerdeeed-

mond Mooney, and David Pardoe for helpful comments and s1ggeings of RoboCup International Symposiufio appear.

tions. This research was supported in part by NSF CAREERdwargiqne p.- Rilev. P.: and Veloso. M. 2000. The CMUnited-S8nch

11IS-0237699, DARPA grant HR0011-04-1-0035, and the UT+#kus pion s’imdlatoryfea'm. In Veloso, M.: Pagello, E.; and Kitahb,

MCD Fellowship. eds.,RoboCup-99: Robot Soccer World Cup. IBerlin: Springer.
35-48.

References Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Reinforoéme
Albus, J. S. 1981Brains, Behavior, and Robotic®eterborough, learning for RoboCup-soccer keepawajdaptive Behaviar To
NH: Byte Books. appear.

Andre, D., and Russell, S. J. 2002. State abstraction for prdSutton, R. S., and Barto, A. G. 199&troduction to Reinforcement
grammable reinforcement learning agents. Pioceedings of the Learning MIT Press.

Eighteenth National Conference on Artificial Intelligent@9-125. Taylor, M. E., and Stone, P. 2005. Behavior transfer for ealu
Andre, D., and Teller, A. 1999. Evolving team Darwin Unitdd. function-based reinforcement learning.The Fourth International
Asada, M., and Kitano, H., edsoboCup-98: Robot Soccer World Joint Conference on Autonomous Agents and Multiagent i&gste
Cup II. Berlin: Springer Verlag. To appear.

Asada, M.; Noda, S.; Tawaratsumida, S.; and Hosoda, K. 1994esauro, G. 1994. TD-Gammon, a self-teaching backgamnmn pr
Vision-based behavior acquisition for a shooting robot bing a gram, achieves master-level plajleural Computatior6(2):215—
reinforcement learning. IRroc. of IAPR/IEEE Workshop on Visual 219.

Behaviors-1994112-118.

