Partial Observability Partially Observable MDPs (POMDPs)

Based on Cassandra, Kaelbling, & Littman, 12th AAAIL 1994

Objectives of this lecture: Start with an MDP <S, A, T, R>, where
S is finite state set
(3 Introduction to POMDPs A is finite action set . N L
T is the state transition function: T(s, a, s”) is prob that next state is s’, given doing a in state s
) Solving POMDPs R is the reward function: R(s, a) is the immediate reward for doing a in state s

(1 RL and POMDPs
Add partial observability:
0, a finite set of possible observations
O, an observation function: O(a, s, 0) is probability of observing o after taking action a in state s

Complexity: finite horizon: PSPACE-complete.
infinite horizon: undecidable
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A Little Example Belief State

Two actions: left, right; deterministic
If moves into a wall, stays in current state b: belief state: a discrete probability distribution over state set S
If reaches the goal state (star), moves randomly to state 0, 1, or 3, and receives reward 1 b(s) = prob agent is in state s

Agent can only observe whether or not it is in the goal state After goal: (1/3, 1/3, 0, 1/3)

After action right and not observing the goal: (0, 1/2, 0, 1/2)
After moving right again and still not observing the goal: (0, 0, 0, 1)

But in general, some actions in some situations can increase uncertainty, while
others can decrease it. An optimal policy in general will sometimes take actions
only to gain information.
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The ““Belief MDP”’

Belief state estimator

SE n

=

= Pr(s'|a,o0,b)
Pr(o| s, a,b)Pr(s' | a.b)
Pr(o| a.b)
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Pr(o| a,b)

where Pr(o | a,b) is a normalizing factor defined as

Pr(o|a,b) = X Ofa.s'.0) Z: T(s.a,s")b(s)
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Value Iteration for the Belief MDP

from Tony Cassandra’s “POMDPs for Dummies”
http://www.cs.brown.edu/research/ai/pomdp/tutorial

1D belief space for a 2 state POMDP
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Belief MDP cont.

Cassandra et al. say: The key to finding truly optimal policies in the par-
tially observable case is to cast the problem as a com-
pletely observable continuous-space MbDP. The state set
of this “belief MDP” is B and the action set is A. Given
a current belief state b and action a, there are only
|O| possible successor belief states b', so the new state
transition function, 7, can be defined as

-

m(b,a,b) = L Pr(o | a,b)
{0EQ|SE(b,a,0)=5")

where Pr(o | a,b) is defined above. If the new belief
state, b’, cannot be generated by the state estimator
from b, a, and some observation, then the probability
of that transition is 0. The reward function, p, is con-
structed from R by taking expectations according to
the belief state; that is,

plb,a) = X’)(h]l(’(h.t!)

SE

"

At first, this may seem strange; it appears the agent is
rewarded simply for believing it is in good states, Be-
cause of the way the state estimation module is con-
structed, it is not possible for the agent to purposely
delude itself into believing that it
when it is not.

s in a good state
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Value function over belief space

L~

V(b)
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Sample PWLC value function Sample PWLC function and its partition of belief space
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Immediate rewards for belief states Value of a fixed action and observation

I Immediate Horizon 1
a2 Rewards Value Function
Summing these for the
best action from b’ gives
the optimal horizon-2
value of taking al in b

T
al has reward 1 in s1; 0 in s2

a2 has reward O in s1; 1.5 in s2

al
\
\ and observing z1
o i
0 1
This is, in fact, the Horizon-1 value function Note: here T is the earlier SE,:(h,a.0)

R.S. Sutton and A. G. Barto: Rei Learning: An i 11 R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction




R.S. Sutton and A. G. Barto: Rei

R.S. Sutton and A. G. Barto: Rei

Transformed value function

Doing this for all belief sates:

Horizon 1

Value Function
~.><
A

-

0

e
1

L~

B _

S{alzl)

-

0 1

Learning: An

Immed reward + S(al, z1)
is the whole value function
for action al and
observation z1 [times
P(z1lal,b)]

Transformed value function for all observations
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Learning: An

Do this for each observation given a1

Immediate .
A
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Horizon 1
Value Function d
[
1

Partitions for all observations

o
—

0 b 1
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If we start at b and do al, then
next best action is:

al if we observe z2 or z3

a2 if we observe z1



Partition for action a1

(al,a2,a1)
1,82,82
(a2, a1 (s2,82,a1) (1,5
zl |
z2
z3
0 1
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Value function and partition for action a2

/

{al,a2,al) (s2,a2,51)
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Value function and partition for action a1

)
-
/ Produced by summing the
\ — appropriate S(al, ) lines
(82,8101} (a2,82,81) {al,82,a1) (al,a2,82)
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Combined a1 and a2 value functions
)
Lo
=
al al a2 al]
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20



Value function for horizon 2
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Value function for action a2 and horizon 3
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Value function for action a1 and horizon 3
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Value functions for both actions a2

and horizon 3
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Value function for horizon 3
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Adjacent belief partitions for
transformed value function
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Learning: An
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General Form of POMDP Solution

\ S(a,z)

0 1 0

v
.

—

Transformed V for a and z
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Making a new partition from S(a,z) partitions

=

How do you do this in general? Not so easy....
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Policy Graphs

When all belief states in one partition are transformed into belief states in
the same partition, given an optimal action and resulting observation, can form
a finite state machine as policy.
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RL for POMDPs

(0 Memoryless policies: treat observations as if they were Markov states

= Use non-bootstrapping algorithm to estimate Q(o, a) for
observations 0; do policy improvement

= Policies can be bad
= Stochastic policies can be better
3 Qwmpr method:

= Ignore the observation model and find optimal Q-values for the
underlying MDP

« Extend to belief states like this: Q,(b) = Eb(s) Ouipr (5,0)

= Assume all uncertainty disappears in one st&p: cannot produce
policies that act to gain information

= But can work surprisingly well in many cases
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More policy graphs

Only goal state is

distinguishable &
e =

Tiger Problem:

Two doors: tiger or big reward

You can choose to listen (for a small cost)
If tiger is on left, you will hear
it on left with prob 0.85, and on
right with prob 0.15, and
symmetrically if tiger is on right

Iterated: restarts with tiger and reward

randomly repositioned

beright b righ| h-leﬁ h-left

@ left h»ngr
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RL for POMDPs

(1 Replicated Q-learning

= Use a single vector, ¢,, to approx Q-function for each
action: Q,(b)=gq,b
= At each step, for every state s:

Agq,(s)=a b(s)| r+ymaxQ,.(b)-q,(s)

= Reduces to normal Q-learning if belief state collapses to
deterministic case

= Certainly suboptimal, but sometimes works well
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RL for POMDPs

(3 Smooth Partially Observable Value Approximation
(SPOVA) Parr and Russell
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For each belief state b S Ml

Ec V) - ®D) +8max > PO|b,aVE)

a€A
v Enexi(b.a)
For i from 1 to |I|
Forjfrom1ton
7y 4 vy + aEbi(yi - DTV
SPOVA

a + best action according to V'
b’ + simulated result of taking a in b.
Epe(D)  V(b) — (R(D) + V()
For i from 1 to |T|

Forjfrom1ton

Vi, v, + aER(D)Di(yi - DY VO T!
SPOVA-RL
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RL for POMDPs

0 Linear Q-Learning
= Almost the same as replicated Q-learning:

Ag,(s)=a b(s)(r +ymaxQ,(b")-gq, (S)) replicated

Ag,(s)=a b(s)(r +ymaxQ,(b)-q," b) linear
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RL for POMDPs

(O McCallum’s U-Tree algorithm, 1996
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Actions: {u, v}

Observations:
Dimension 1: {A, B,C}
Dimension 2: (@, #.$}
Dimension 3: {+, -}
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