
Policy Gradient Reinforcement Learning for Fast
Quadrupedal Locomotion

Nate Kohl and Peter Stone
Department of Computer Sciences, The University of Texas at Austin

1 University Station C0500, Austin, Texas 78712-1188
{nate,pstone}@cs.utexas.edu

http://www.cs.utexas.edu/˜{nate,pstone}

Abstract— This paper presents a machine learning approach
to optimizing a quadrupedal trot gait for forward speed. Given
a parameterized walk designed for a specific robot, we propose
using a form of policy gradient reinforcement learning to
automatically search the set of possible parameters with the
goal of finding the fastest possible walk. We implement and
test our approach on a commercially available quadrupedal
robot platform, namely the Sony Aibo robot. After about
three hours of learning, all on the physical robots and with
no human intervention other than to change the batteries, the
robots achieved a gait faster than any previously known gait
for the Aibo, significantly outperforming a variety of existing
hand-coded and learned solutions.

Keywords: Learning Control, Walking Robots, Multi Legged
Robots

I. I NTRODUCTION

Locomotion of legged robots is a challenging multidimen-
sional control problem. It requires the specification and coor-
dination of motions in all of the robots’ legs while accounting
for factors such as stability and surface friction.

One popular research platform for legged locomotion cur-
rently is the Sony Aibo robot,1 spurred on in part by the
annual RoboCup 4-legged soccer competitions [1]. In this
domain, the speed of individual robots is often a major factor
in determining the success of a team. Since the default gait that
comes with the Aibo is fairly slow, there has been significant
incentive within the RoboCup community to develop improved
locomotion for the Aibos.

Until recently, most of the locomotion improvements for the
Aibo centered around hand-tuning a parameterized gait. This
approach has been somewhat fruitful: since the inception of the
RoboCup legged league in 1998, the speed of the Aibos has
increased significantly. However, the process of hand-tuning
a parameterized gait both can be time-consuming and can
require a good deal of human expertise. Furthermore, a change
of robot hardware and/or the surface on which it is to walk
necessitates tuning anew.

One alternative to hand-tuning a parameterized gait is to use
machine learning to automate the search for good parameters.
In the past, various machine learning techniques have proven
to be useful in finding control policies for a wide variety
of robots including helicopters [2], [3], biped robots [4] and
Aibos [5], [6], [7]. This paper presents a policy gradient

1http://www.aibo.com

reinforcement learning approach for generating a fast walk on
legged robots. Using this method, we have created a walk that
is faster than hand-tuned gaits and among the fastest learned
gaits.

The remainder of this paper is organized as follows. Sec-
tion II introduces the Sony Aibo ERS-210A robot platform and
summarizes general methods for enabling Aibos to walk, both
past and current. Section III presents our method for automat-
ically generating a fast walk via machine learning, specifically
policy gradient reinforcement learning. Section IV reports on
our learning experiments. Section V presents discussion and
future work and Section VI concludes.

II. WALKING A IBOS

The Sony Aibo ERS-210A is a commercially available robot
that comes equipped with a color CMOS camera and an
optional ethernet card that can be used for wireless communi-
cation. The Aibo is a quadruped robot, and has three degrees
of freedom in each of its four legs.

At the lowest level, the Aibo’s gait is determined by a series
of joint positions for the three joints in each of its legs. An
early attempt to develop a gait by Hornby et al.2 involved
using a genetic algorithm to learn a set of low-level parameters
that described joint velocities and body position [5]. More
recent attempts to develop gaits for the Aibo have involved
adopting a higher-level representation that deals with the
trajectories of the Aibo’s four feet through three-dimensional
space. An inverse kinematics calculation can then be used to
convert these trajectories into joint angles.

Among higher-level approaches, most of the differences
between gaits that have been developed for the Aibo stem from
the shape of the loci through which the feet pass and the exact
parameterizations of those loci. For example, a team from the
University of New South Wales achieved the fastest known
hand-tuned gait using the high-level approach described above
with trapezoidal loci. They subsequently generated an even
faster walk via learning [7]. In research conducted indepen-
dently of the work presented here, the University of Newcastle
team was able to generate very fast gaits by using a genetic
algorithm and a similar loci parameterization [8]. A team from
Germany created a flexible gait implementation that allows
them to use a variety of different shapes of loci [9].

2Developed on an earlier version of the Aibo.

Our team (UT Austin Villa [10]) first approached the gait
optimization problem by hand-tuning a gait described by half-
elliptical loci. This gait performed comparably to those of
other teams participating in RoboCup 2003. The work reported
in this paper uses the hand-tuned UT Austin Villa walk as a
starting point for learning. Figure 1 compares the reported
speeds of the gaits mentioned above, both hand-tuned and
learned, including that of our starting point, the UT Austin
Villa walk. The latter walk is described fully in a team
technical report [10]. The remainder of this section describes
the details of the UT Austin Villa walk that are important to
understand for the purposes of this paper.

Hand-tuned gaits Learned gaits
CMU German UT Austin Hornby
(2002) Team Villa UNSW 1999 UNSW
200 230 245 254 170 270

Fig. 1. Maximum forward velocities of the best current gaits (in mm/s) for
different teams, both learned and hand-tuned.

The half-elliptical locus used by our team is shown in
Figure 2. By instructing each foot to move through a locus of
this shape, with each pair of diagonally opposite legs in phase
with each other and perfectly out of phase with the other two
(a gait known as a trot), we enable the Aibo to walk. Four
parameters define this elliptical locus:

1) The length of the ellipse;
2) The height of the ellipse;
3) The position of the ellipse on thex axis; and
4) The position of the ellipse on they axis.

Since the Aibo is roughly symmetric, the same parameters
can be used to describe loci on both the left and right side
of the body. To ensure a relatively straight gait, the length
of the ellipse is the same for all four loci. Separate values
for the elliptical height,x, and y positions are used for the
front and back legs. An additional parameter which governs
the turning rate of the Aibo is used to determine the skew of
all four ellipses in thex-y plane, a technique introduced by
the UNSW team [11].3 The amount of skew is determined by
the product of the angle at which the Aibo wishes to move
and this skew multiplier parameter.

All told, the following set of 12 parameters define the Aibo’s
gait [10]:

• The front locus (3 parameters: height,x-pos.,y-pos.)
• The rear locus (3 parameters)
• Locus length
• Locus skew multiplier in thex-y plane (for turning)
• The height of the front of the body
• The height of the rear of the body
• The time each foot takes to move through its locus
• The fraction of time each foot spends on the ground

3Even when walking directly forward, noise in an Aibo’s motions occa-
sionally requires that the four ellipses be skewed to allow the Aibo to execute
small turns in order to stay on course.

z

x

y

Fig. 2. The elliptical locus of the Aibo’s foot. The half-ellipse is defined by
length, height, and position in thex-y plane.

During the American Open tournament in May of 2003,4

UT Austin Villa used a simplified version of the parameter-
ization described above that did not allow the front and rear
heights of the robot to differ. Hand-tuning these parameters
generated a gait that allowed the Aibo to move at 140 mm/s.
After allowing the front and rear height to differ, the Aibo was
tuned to walk at 245 mm/s in the RoboCup 2003 competition.5

Applying machine learning to this parameter optimization
process, however, allowed us to significantly improve the
speed of the Aibos, as described in the following section.

III. L EARNING THE WALK

Given the parameterization of the walk defined in Section II,
our task amounts to a parameter optimization problem in a
continuous 12-dimensional space. For the purposes of this
paper, we adopt forward speed as the sole objective function.
That is, as long as the robot does not actually fall over, we
do not optimize for any form of stability (for instance in the
face of external forces from other robots).

We formulate the problem as a policy gradient reinforce-
ment learning problem by considering each possible set of
parameter assignments as defining open-loop policy that can
be executed by the robot. Assuming that the policy is differ-
entiable with respect to each of the parameters, we estimate
the policy’s gradient in parameter space, and then follow it
towards a local optimum.

Since we do not know anything about the true functional
form of the policy, we cannot calculate the gradient exactly.
Furthermore, empirically estimating the gradient by sampling
can be computationally expensive if done naively, given the
large size of the search space and the temporal cost of each
evaluation. Given the lack of accurate simulators for the Aibo,
we are forced to perform the learning entirely on real robots,
which makes efficiency a prime concern.

In this section we present an efficient method of estimat-
ing the policy gradient. It can be considered a degenerate

4http://www.cs.cmu.edu/˜AmericanOpen03/
5http://www.openr.org/robocup/ . Thanks to Daniel Stronger for

hand-tuning the walks to achieve these speeds.

form of standard policy gradient reinforcement learning tech-
niques [12], [13] in that the control policy is essentially open
loop and that the only effect of sensory input is to make small
steering adjustments to compensate for noise. Like these more
general techniques, our approach will only converge towards
a local optimum. In contrast, some action-value reinforcement
learning algorithms, such as Q-learning provably converge to
the globally optimal policy [14]. However, Q-learning, which
is designed for Markov decision processes, is not directly
applicable to our problem, which features open-loop control
and no notion of “state”.

Our approach starts from an initial parameter vectorπ =
{θ1, . . . , θN} (where N = 12 in our case) and proceeds to
estimate the partial derivative ofπ’s objective function with
respect to each parameter. We do so by first evaluatingt
randomly generated policies{R1, R2, . . . , Rt} near π, such
that eachRi = {θ1 + ∆1, . . . , θN + ∆N} and each∆j is
chosen randomly to be either+εj , 0, or −εj . Each εj is a
fixed value that is small relative toθj . As described below, the
evaluation of each policy generates a score that is a measure
of the speed of the gait described by that policy.

After evaluating the speed of eachRi, we estimate the
partial derivative in each of theN dimensions. We do this by
grouping eachRi into one of three sets for each dimensionn:

Ri ∈

S+ε,n if the nth parameter ofRi is θn + εn

S+0,n if the nth parameter ofRi is θn + 0

S−ε,n if the nth parameter ofRi is θn − εn

We then compute an average scoreAvg+ε,n, Avg+0,n, and
Avg−ε,n for S+ε,n, S+0,n, andS−ε,n, respectively. These three
averages give us an estimate of the benefit of altering the
nth parameter by+εn, 0, or −εn. Note that in expectation,
there will be t/3 of the t policies with each of the three
possible parameter settings, though there will be some random
variation. For an example of this process for one dimension,
see Figure 3. We use these scores to construct an adjustment
vectorA of sizeN , where

An =

0 if Avg+0,n > Avg+ε,n and

Avg+0,n > Avg−ε,n,

Avg+ε,n −Avg−ε,n otherwise

We normalizeA and multiply it by a scalar step-sizeη, so
that our adjustment will remain a fixed size each iteration. Fi-
nally, we addA to π, and begin the next iteration. Pseudocode
for this policy gradient algorithm is shown in Figure 4.

We controlled our experiments from a computer that was
connected via wireless ethernet to the Aibos. All of the policy
evaluations took place on actual robots, without the use of a
simulator. Previous attempts at learning Aibo gaits involved
running each experiment directly on the Aibo, which imposed
certain time limitations on the learning process [7]. A more
decentralized approach allowed us to distribute the learning
process over multiple Aibos and prevented the loss of data

π1 π2 − πN Score

−ε1

θ1 − ε1 . . . 207
θ1 − ε1 . . . 214

. . .

⇒ Average: 210

+0

θ1 + 0 . . . 225
θ1 + 0 . . . 220

. . .

⇒ Average: 220

+ε1

θ1 + ε1 . . . 239
θ1 + ε1 . . . 244

. . .

⇒ Average: 240

θ1 − ε1 θ1 + ε1θ1 + 0

240
230
220
210

Fig. 3. An example of the process for estimating the gradient in one
dimension. EachRi is grouped into one of three categories, depending on the
value of the first parameter (π1) of eachRi. The averages for these categories
can be used to estimate the value of the objective function at and aroundθ1.

π ← InitialPolicy
while !donedo
{R1, R2, . . . , Rt} = t random perturbations ofπ
evaluate({R1, R2, . . . , Rt})
for n = 1 to N do

Avg+ε,n ← average score for allRi that have a positive
perturbation in dimensionn

Avg+0,n ← average score for allRi that have a zero
perturbation in dimensionn

Avg−ε,n ← average score for allRi that have a
negative perturbation in dimensionn

if Avg+0,n > Avg+ε,n andAvg+0,n > Avg−ε,n then
An ← 0

else
An ← Avg+ε,n −Avg−ε,n

end if
end for
A← A

|A| ∗ η
π ← π + A

end while

Fig. 4. Pseudocode for theN -dimensional policy gradient algorithm. During
each iteration of the main loop we samplet policies nearπ to estimate the
gradient aroundπ, then moveπ by an amount ofη in the most favorable
direction.

due to battery swaps and mechanical failure. This also meant
that the only human intervention required during an experi-
ment involved replacing discharged batteries, an event which
occurred about once an hour. We used three simultaneously
walking Aibos for our experiments, but our approach is general
and allows us to scale to arbitrary numbers of Aibos.

We evaluated the efficacy of a set of parameters by sending

those parameters to an Aibo and instructing it to time itself
as it walked between two fixed landmarks (Figure 5). More
efficient parameters resulted in a faster gait, which translated
into a lower time and a better score. After completing an
evaluation, the Aibo sent the resulting score back to the host
computer and prepared itself for a new set of parameters to
evaluate.6

When implementing the algorithm described above, we
chose to evaluatet = 15 policies per iteration. Since there
was significant noise in each evaluation, each set of parameters
was evaluated three times. The resulting score for that set of
parameters was computed by taking the average of the three
evaluations. Each iteration therefore consisted of 45 traversals
between pairs of beacons and lasted roughly7 1

2 minutes. Since
even small adjustments to a set of parameters could lead to
major differences in gait speed, we chose relatively small
values for eachεj . To offset the small values of eachεj , we
accelerated the learning process by using a larger value of
η = 2 for the step size.

A

B

C

A’

LandmarksLandmarks

C’

B’

Fig. 5. The training environment for our experiments. Each Aibo times itself
as it moves back and forth between a pair of landmarks (A and A’, B and B’,
or C and C’).

IV. RESULTS

Our main result is that using the algorithm described in
Section III, we were able to find one of the fastest known Aibo
gaits. Figure 6 shows the performance of the best policy of
each iteration during the learning process. After 23 iterations
the learning algorithm produced a gait (shown in Figure 8)
that yielded a velocity of291± 3 mm/s, faster than both the
best hand-tuned gaits and the best previously known learned
gaits (see Figure 1). The parameters for this gait, along with
the initial parameters andε values are given in Figure 7.

Note that we stopped training after reaching a peak policy at
23 iterations, which amounted to just over 1000 field traversals
in about 3 hours. Subsequent evaluations showed no further
improvement, suggesting that the learning had plateaued.

6There is video of the training process at:
www.cs.utexas.edu/˜AustinVilla/legged/learned-walk/

180

200

220

240

260

280

300

0 5 10 15 20 25

V
e

lo
ci

ty
 (

m
m

/s
)

Number of Iterations

Velocity of Learned Gait during Training

(UT Austin Villa)

Learned Gait

Hand−tuned Gait

Hand−tuned Gait

Hand−tuned Gait

(UNSW)

(UNSW)

(German Team)

(UT Austin Villa)
Learned Gait

Fig. 6. The velocity of the best gait from each iteration during training,
compared to previous results. We were able to learn a gait significantly faster
than both hand-coded gaits and previously learned gaits.

Parameter Initial ε Best
Value Value

Front locus:
(height) 4.2 0.35 4.081

(x offset) 2.8 0.35 0.574
(y offset) 4.9 0.35 5.152

Rear locus:
(height) 5.6 0.35 6.02

(x offset) 0.0 0.35 0.217
(y offset) -2.8 0.35 -2.982

Locus length 4.893 0.35 5.285
Locus skew multiplier 0.035 0.175 0.049
Front height 7.7 0.35 7.483
Rear height 11.2 0.35 10.843
Time to move

through locus 0.704 0.016 0.679
Time on ground 0.5 0.05 0.430

Fig. 7. The initial policy, the amount of change (ε) for each parameter, and
best policy learned after 23 iterations. All values are given in centimeters,
except time to move through locus, which is measured in seconds, and time
on ground, which is a fraction.

There are a couple of possible explanations for the amount
of variation in the learning process, visible as the spikes in
the learning curve shown in Figure 6. Despite the fact that we
averaged over multiple evaluations to determine the score for
each policy, there was still a fair amount of noise associated
with the score for each policy. It is entirely possible that
this noise led the search astray at times, causing temporary
decreases in performance. Another explanation for the amount
of variation in the learning process could be the relatively large
step size (η = 2) used to adjust the policy at the end of each
iteration. As mentioned previously, we chose a large step size
to offset the relatively small values ofε. While serving to
accelerate the rate of learning, this large step size might also
have caused the search process to periodically jump into a

(a) (b)

(c) (d)

(e) (f)

Fig. 8. A series of snapshots of the best learned gait, which allows the Aibo
to trot at 291 mm/s.

bad part of the policy space, which would have again caused
a temporary decrease in performance.

Two possible reasons for the overall success of our exper-
iment are (i) that our policy gradient algorithm is particu-
larly effective for learning this task, and (ii) that the gait
implementation itself is superior to previous approaches. To
test the first possibility, we compared the performance of our
approach to that of other parameter optimization methods, such
as those presented by Press [15]. For example, Kim and Uther
used Powell’s method to tune their walk [7], and Weingarten
et al. applied Nelder and Mead’sDownhill Simplex Method
(aka “amoeba”) to generate the fastest known legged walk in
terms of body lengths per second on a custom hexapod robot
platform [16]. As a comparison point, we implemented the
Nelder Mead algorithm and used it to generate gaits for our
robots. Preliminary results with this method suggest that while
it was able to do some learning, the volume of the simplex
quickly converged to zero which required that the algorithm be
restarted frequently. The fastest gait that this method was able
to discover has a reasonable speed of 248 mm/s. So far, the
policy gradient algorithm currently has yielded better results
with fewer evaluations, suggesting that the particular learning
algorithm we use does indeed play a role in our success.

It is also possible that our particular gait implementation
was a key factor. Enabling an Aibo to walk requires careful
crafting of a variety of components that must work together
seamlessly. Since we developed all of our code from scratch, it
is likely that some parts of our low-level gait implementation
differed from other implementations. The aggregate effect
of these differences could have some affect the process of

learning an efficient gait. Unfortunately, it is difficult to
determine the impact of any particular implementation, due
to the difficulty of porting or exactly re-creating code from
other implementations.

The starting point for the search could have also affected
our final results. Since it was not obvious where the search
algorithm should start, we tried several different starting points
that varied in the degree to which they had been hand-
tuned. We tested one extreme of this spectrum by starting
from completely random parameters. This proved to be too
much of an obstacle for the Aibos, since the gaits defined by
random parameters often led to violent behaviors and frequent
mechanical failures. When we started from parameters that
had been slightly tuned by hand, we found that the learning
algorithm was able to discover a gait that moved at 186 mm/s,
but the rate of learning was too slow to be useful.

Conversely, when we started from parameters that had been
finely hand-tuned, we found that the learning algorithm had to
escape a local maximum before it could make any progress.
Although this starting point yielded better results (260 mm/s)
than both the random and the slightly hand-tuned starting
points, our fastest result came from a compromise. The best
starting point proved to be a set of parameters (shown in
Figure 7) that had been roughly tuned by hand, but not overly
tuned, and which constituted a reasonable but slow gait.

V. D ISCUSSION ANDFUTURE WORK

One of the useful aspects of automating the gait optimiza-
tion process is that search algorithms often possess less bias
than human engineers. For example, our gait was designed
after a trot gait, where diagonally opposite legs strike the
ground simultaneously. We assumed that the ideal trot gait
would keep two feet on the ground at all times. Interestingly
enough, the best learned gait defied our expectations by
attempting to keep each foot on the ground only 43% of the
time. By allowing the learning process to affect a large portion
of the gait, we were able to discover parameter settings that
we would not have likely found through hand-tuning.

On a similar note, recent work has suggested that due to
mechanical limitations and environmental noise, the actual
locus that each foot follows is significantly different than
the requested half-elliptical locus [17]. Given this discrep-
ancy between the ideal locus and the real locus, a change
in parameters describing the ideal locus may not have the
intended effect on the real locus. This discrepancy could
make hand-tuning difficult for humans, who expect a certain
correspondence between parameters and their effects on the
gait. Since the learning process is unaware of the semantics
of the parameters, it therefore might not suffer as much from
discrepancies between the expected loci and the actual loci.

Another benefit of automated learning can arise in situations
such that the robots are required to repeatedly switch surfaces.
In RoboCup, the surfaces of different playing fields can vary
widely in hardness and friction. Repeatedly tuning parameters
by hand for each surface could consume a great deal of
time from human engineers, whereas automatically learning

parameters for various surfaces would require significantly less
human intervention.

Our method could be considered a form of multi-robot
learning, in that it would be relatively straightforward to
implement the learning algorithm presented here without the
use of a central controller. Since the evaluations that each Aibo
performs are generated randomly, the algorithm that each Aibo
executes could be run almost completely independently of the
other Aibos. The only requirement would be that each Aibo
communicate the results of the evaluations that it performs to
the other Aibos and that they have a common notion of the
parametert which governs the number of policies evaluated
per iteration. After finding out the results oft evaluations,
each robot could then independently perform the calculation
to determine the next policyπ and continue with the next
iteration. In contrast, Nelder and Mead’s Downhill Simplex
method requires much stricter control over which policies are
evaluated. Thus the robots would need to explicitly coordinate
which policies they are to evaluate, and find a way to re-do
evaluations that are interrupted by battery changes.

It is important to note that our approach requires a rea-
sonable starting policy. Since we are not explicitly trying to
find a stable gait, starting from an unstable gait can lead to
mechanical failures that can make it difficult for the Aibos
to make much progress. As a result, our method is probably
not yet directly applicable to the problem of finding an initial
stable walk (e.g. for a bipedal robot).

Since we distributed the learning process over multiple
robots, the policies that we discovered were not tuned to any
particular robot. While the hardware that the Aibos are made
up of is theoretically homogeneous, cumulative wear and tear
over time can lead to significant differences between Aibos.
It is therefore possible that we could achieve further increases
in performance by training individual robots to fine-tune their
parameters.

Another interesting avenue for future work is learning fast
omni-directional gaits. While the work presented in this paper
has focused on maximizing velocity in a forward direction,
methods similar to those presented here could be used to op-
timize turning gaits or gaits for movement in other directions.

Based on our success on the Aibos, we surmise that the
learning methods presented in this paper will generalize to
other types of legged robots as well. Given a rough gait
designed by a human, our algorithm should enable the robot
to fine-tune for speed without human intervention.

VI. CONCLUSION

In this paper, we presented our approach to automatically
learning a fast walk on a quadruped robot, namely the Aibo
ERS-210A. The policy gradient approach we use allows for
distributed, efficient policy evaluation, with all learning hap-
pening directly on the robots. Using this method, we have
generated one of the fastest known walks on the Aibo: 291
mm/s. Video of our initial gait, training process, and final gait
are all available on-line.7

7www.cs.utexas.edu/˜AustinVilla/legged/learned-walk/

VII. A CKNOWLEDGMENTS

We would like to thank the members of the UT Austin
Villa team, and Daniel Stronger in particular, for their efforts
in developing the gaits and software mentioned in this paper.
This research was supported in part by NSF CAREER award
IIS-0237699.

REFERENCES

[1] P. Stone, T. Balch, and G. Kraetszchmar, Eds.,RoboCup-2000: Robot
Soccer World Cup IV, ser. Lecture Notes in Artificial Intelligence 2019.
Berlin: Springer Verlag, 2001.

[2] J. A. Bagnell and J. Schneider, “Autonomous helicopter control using
reinforcement learning policy search methods,” inInternational Confer-
ence on Robotics and Automation, 2001.

[3] A. Y. Ng, H. J. Kim, M. I. Jordan, and S. Sastry, “Autonomous helicopter
flight via reinforcement learning,” inAdvances in Neural Information
Processing Systems 17. MIT Press, 2004, to Appear.

[4] R. Zhang and P. Vadakkepat, “An evolutionary algorithm for trajectory
based gait generation of biped robot,” inProceedings of the International
Conference on Computational Intelligence, Robotics and Autonomous
Systems, Singapore, 2003.

[5] G. S. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and O. Hanagata,
“Autonomous evolution of gaits with the Sony quadruped robot,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, Eds., vol. 2. Orlando, Florida, USA:
Morgan Kaufmann, 13-17 1999, pp. 1297–1304. [Online]. Available:
citeseer.nj.nec.com/hornby99autonomous.html

[6] G. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto, and
M. Fujita, “Evolving robust gaits with AIBO,” inIEEE International
Conference on Robotics and Automation, 2000, pp. 3040–3045.

[7] M. S. Kim and W. Uther, “Automatic gait optimisation for quadruped
robots,” in Australasian Conference on Robotics and Automation, Bris-
bane, December 2003.

[8] M. J. Quinlan, S. K. Chalup, and R. H. Middleton, “Techniques for im-
proving vision and locomotion on the sony aibo robot,” inAustralasian
Conference on Robotics and Automation, Brisbane, December 2003.

[9] T. Rofer, H.-D. Burkhard, U. Duffert, J. Hoffman, D. Gohring,
M. Jungel, M. Lotzach, O. v. Stryk, R. Brunn, M. Kallnik, M. Kunz,
S. Petters, M. Risler, M. Stelzer, I. Dahm, M. Wachter, K. Engel,
A. Osterhues, C. Schumann, and J. Ziegler, “Germanteam robocup
2003,” Tech. Rep., 2003. [Online]. Available: http://www.robocup.de/
germanteam/GT2003.pdf

[10] P. Stone, K. Dresner, S. T. Erdoğan, P. Fidelman, N. K. Jong, N. Kohl,
G. Kuhlmann, E. Lin, M. Sridharan, D. Stronger, and G. Hariharan, “UT
Austin Villa 2003: A new RoboCup four-legged team,” The University
of Texas at Austin, Department of Computer Sciences, AI Laboratory,
Tech. Rep. UT-AI-TR-03-304, 2003, at http://www.cs.utexas.edu/home/
department/pubsforms.shtml.

[11] B. Hengst, D. Ibbotson, S. B. Pham, and C. Sammut, “Omnidirectional
motion for quadruped robots,” inRoboCup International Symposium,
Lecture Notes in Computer Science, Lecture Notes in Artificial Intel-
ligence LNAI 2377, A. Birk, S. Coradeschi, and S. Tadokoro, Eds.
Springer, 2001, p. 368.

[12] R. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems, vol. 12. The
MIT Press, 2000, pp. 1057–1063.

[13] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estimation,”
Journal of Artificial Intelligence Research, vol. 15, pp. 319–350, 2001.

[14] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, UK, 1989.

[15] W. H. Press,Numerical Recipes in C: the art of scientific computing.
Cambridge: Cambridge University Press, 1988.

[16] J. D. Weingarten, G. A. D. Lopes, M. Buehler, R. E. Groff, and D. E.
Koditschek, “Automated gait adaptation for legged robots,” inSubmitted
to 2004 IEEE International Conference on Robotics and Automation,
2003.

[17] D. Stronger and P. Stone, “A model-based approach to robot joint
control,” November 2003, under Review. Available from http://www.
cs.utexas.edu/˜pstone/papers.html.

