Objectives of this chapter:

- Use of environment models
- **Integration of planning and learning methods**

- Model: anything the agent can use to predict how the environment will respond to its actions
- Distribution model: description of all possibilities and their probabilities
 - e.g., $P_{ss'}^a$ and $R_{ss'}^a$ for all s, s', and $a \in A(s)$
- **Sample model:** produces sample experiences
 - e.g., a simulation model
- Both types of models can be used to produce simulated experience
- Often sample models are much easier to come by

Planning

Planning: any computational process that uses a model to create or improve a policy
planning

model

policy

- **Planning in AI:**
 - state-space planning
 - plan-space planning (e.g., partial-order planner)
- □ We take the following (unusual) view:
 - all state-space planning methods involve computing value functions, either explicitly or implicitly
 - they all apply backups to simulated experience

Planning Cont.

- Classical DP methods are state-space planning methods
- Heuristic search methods are state-space planning methods
- □ A planning method based on Q-learning:

Do forever:

1. Select a state, $s \in S$, and an action, $a \in A(s)$, at random

2. Send s, a to a sample model, and obtain a sample next state, s', and a sample next reward, r

3. Apply one-step tabular Q-learning to s, a, s', r: $Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$

Random-Sample One-Step Tabular Q-Planning

Learning, Planning, and Acting

Direct vs. Indirect RL

- Indirect (model-based) methods:
 - make fuller use of experience: get better policy with fewer environment interactions

Direct methods

- simpler
- not affected by bad models

But they are very closely related and can be usefully combined:

planning, acting, model learning, and direct RL can occur simultaneously and in parallel

The Dyna-Q Algorithm

Dyna-Q on a Simple Maze

Dyna-Q Snapshots: Midway in 2nd Episode

When the Model is Wrong: Blocking Maze

The changed environment is harder

Shortcut Maze

The changed environment is easier

What is Dyna-Q⁺?

Uses an "exploration bonus":

- Keeps track of time since each state-action pair was tried for real
- An extra reward is added for transitions caused by state-action pairs related to how long ago they were tried: the longer unvisited, the more reward for visiting
- The agent actually "plans" how to visit long unvisited states

Prioritized Sweeping

- Which states or state-action pairs should be generated during planning?
- Work backwards from states whose values have just changed:
 - Maintain a queue of state-action pairs whose values would change a lot if backed up, prioritized by the size of the change
 - When a new backup occurs, insert predecessors according to their priorities
 - Always perform backups from first in queue
- ☐ Moore and Atkeson 1993; Peng and Williams, 1993

Prioritized Sweeping

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty Do forever: (a) $s \leftarrow \text{current}$ (nonterminal) state (b) $a \leftarrow policy(s, Q)$ (c) Execute action a; observe resultant state, s', and reward, r(d) $Model(s, a) \leftarrow s', r$ (e) $p \leftarrow |r + \gamma \max_{a'} Q(s', a') - Q(s, a)|.$ (f) if $p > \theta$, then insert s, a into PQueue with priority p (g) Repeat N times, while PQueue is not empty: $s, a \leftarrow first(PQueue)$ $s', r \leftarrow Model(s, a)$ $Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$ Repeat, for all \bar{s}, \bar{a} predicted to lead to s: $\bar{r} \leftarrow \text{predicted reward}$ $p \leftarrow |\bar{r} + \gamma \max_a Q(s, a) - Q(\bar{s}, \bar{a})|.$ if $p > \theta$ then insert \bar{s}, \bar{a} into PQueue with priority p

Prioritized Sweeping vs. Dyna-Q

Rod Maneuvering (Moore and Atkeson 1993)

Full and Sample (One-Step) Backups

b successor states, equally likely; initial error = 1; assume all next states' values are correct

Trajectory Sampling

- Trajectory sampling: perform backups along simulated trajectories
- □ This samples from the on-policy distribution
- Advantages when function approximation is used
- Focusing of computation: can cause vast uninteresting parts of the state space to be (usefully) ignored:

Trajectory Sampling Experiment

- one-step full tabular backups
- uniform: cycled through all stateaction pairs
- on-policy: backed up along simulated trajectories
- 200 randomly generated undiscounted episodic tasks
- 2 actions for each state, each with b equally likely next states
- .1 prob of transition to terminal state
- expected reward on each transition selected from mean 0 variance 1 Gaussian

- Used for action selection, not for changing a value function (=heuristic evaluation function)
- □ Backed-up values are computed, but typically discarded
- □ Extension of the idea of a greedy policy only deeper
- Also suggests ways to select states to backup: smart focusing:

Summary

- Emphasized close relationship between planning and learning
- Important distinction between distribution models and sample models
- **D** Looked at some ways to integrate planning and learning
 - synergy among planning, acting, model learning
- Distribution of backups: focus of the computation
 - trajectory sampling: backup along trajectories
 - prioritized sweeping
 - heuristic search
- □ Size of backups: full vs. sample; deep vs. shallow