Chapter 9: Planning and Learning

Objectives of this chapter:

1 Use of environment models

1 Integration of planning and learning methods
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Models

1 Model: anything the agent can use to predict how the
environment will respond to its actions

1 Distribution model: description of all possibilities and their
probabilities

= e.g, Pl and R forall s, s', and a EA(s)
1 Sample model: produces sample experiences
= €.g., a simulation model

1 Both types of models can be used to produce simulated
experience

1 Often sample models are much easier to come by
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Planning

1 Planning: any computational process that uses a model to

create or improve a policy

planning _
model » policy

1 Planning in Al:

» state-space planning

= plan-space planning (e.g., partial-order planner)
1 We take the following (unusual) view:

= all state-space planning methods involve computing
value functions, either explicitly or implicitly

» they all apply backups to simulated experience

simulated backups

model - :
experience

> values ————m policy
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Planning Cont.

1 Classical DP methods are state-space planning methods
1 Heuristic search methods are state-space planning methods

1 A planning method based on Q-learning:

Do forever: |
1. Select a state, s € §, and an action, a € A(s), at random
2. Send s, a to a sample model, and obtain a sample next state, s/,
and a sample next reward, r
3. Apply one-step tabular Q-learning to s, a, ', r:
O(s,a) < Q(s,a) + o [r + y max, Q(s', a) — Q(s, a)]

Random-Sample One-Step Tabular Q-Planning
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Learning, Planning, and Acting

[ Two uses of real experience: value/policy

= model learning: to improve
the model

s direct RL: to directly
improve the value function
and policy

acfing
planning

: . model experience
[ Improving value function P

and/or policy via a model is \_/

sometimes called indirect RL or model
model-based RL. Here, we call learning
it planning.
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Direct vs. Indirect RL

1 Indirect (model-based) [ Direct methods

methods: = simpler
= make fuller use of = not affected by bad
experience: get better models
policy with fewer
environment
interactions

But they are very closely related and can be usefully combined:

planning, acting, model learning, and direct RL can occur
simultaneously and in parallel
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The Dyna Architecture (Sutton 1990)

[N\

& ,
Policy/value functions

planning update

direct BL simulated
update experience
real ;
experience
search
learning control
Model

[Environment]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



The Dyna-Q Algorithm

Initialize Q(s, a) and Model(s, a) for all s € § and a € A(s)
Do forever:
(a) s <« current (nonterminal) state

(b) Qa E"gI'OCdY(S, Q)

(c) Execute action a; observe resultant state, s, and reward, r — direct
(@) Q(s,a) « Q(s,a) + e [r +y maxy Q(s',a") — Q(s, a)] RL
(e) Model(s,a) <« s',r (assuming deterministic environment) «— model I¢arning

(f) Repeat N times:
s « random previously observed state
a <« random action previously taken in s
s',r < Model(s, a)
Q(s,a) « O(s,a) + [r + y max, Q(s’, ¢’y — QOC(s, a)]

<— planning
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Dyna-(Q on a Simple Maze
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Dyna-Q Snapshots: Midway in 2nd Episode
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When the Model is Wrong:
Blocking Maze

The changed environment is harder
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Shortcut Maze

The changed environment is easier
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What is Dyna-Q*?

1 Uses an “exploration bonus”:

» Keeps track of time since each state-action pair was
tried for real

= An extra reward is added for transitions caused by
state-action pairs related to how long ago they were
tried: the longer unvisited, the more reward for visiting

» The agent actually “plans” how to visit long unvisited
states
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Prioritized Sweeping

1 Which states or state-action pairs should be generated
during planning?

1 Work backwards from states whose values have just
changed:

» Maintain a queue of state-action pairs whose values
would change a lot if backed up, prioritized by the size
of the change

= When a new backup occurs, insert predecessors
according to their priorities

» Always perform backups from first in queue
1 Moore and Atkeson 1993; Peng and Williams, 1993
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Prioritized Sweeping

Initialize ()(s,a), Model(s.a), for all s,a, and PQueue to empty
Do forever:

a) s «— current (nonterminal) state

h} a — policy(s, Q)

":"]' #= |‘I + 7y maxy {2[ } - (o)f ' }|
fyiftp =40, tllul insert s, a into PQueue with priority p
o) Repeat N times, while PQueue is not empty:
s,a «— first( PQueue)
s'.r— Model(s,a)
Qs,a) «— Qs, n] } n-[-' Fymax, Q(s',a’) — Qls. fr.jl]
Repeat, for all s, a predicted to lead to s:
7« predicted reward
p— |r+vymax, Q(s,a) — Q(s, a).
if p = 0 then insert 5, a into PQueue with priority p

(a)
(
(
(d) Model(s,a) — s,
(
(
(

¢) Execute action a; observe resultant state, s', and reward, r
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Prioritized Sweeping vs. Dyna-(Q
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Rod Maneuvering (Moore and Atkeson 1993)
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Full and Sample (One-Step) Backups

Value Full backups Sample backups
estimated (DP) (one-step TD)
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Full vs. Sample Backups
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Trajectory Sampling

1 Trajectory sampling: perform backups along simulated
trajectories

1 This samples from the on-policy distribution
1 Advantages when function approximation is used

1 Focusing of computation: can cause vast uninteresting parts
of the state space to be (usefully) ignored:

Initial
states

Reachable under Irrelevant states
optimal control
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Trajectory Sampling Experiment

1 one-step full tabular backups
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Heuristic Search

1 Used for action selection, not for changing a value function
(=heuristic evaluation function)

1 Backed-up values are computed, but typically discarded
1 Extension of the idea of a greedy policy — only deeper

1 Also suggests ways to select states to backup: smart

focusing:
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Summary

1 Emphasized close relationship between planning and
learning

1 Important distinction between distribution models and
sample models

1 Looked at some ways to integrate planning and learning
= synergy among planning, acting, model learning
1 Distribution of backups: focus of the computation
= trajectory sampling: backup along trajectories
= prioritized sweeping
» heuristic search
1 Size of backups: full vs. sample; deep vs. shallow
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