Chapter 7: Eligibility Traces

Dynamic
Programming

Temporal-
Difference Monte Carlo
Learning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Midterm

120

100

80

[l Series1

60

40

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Mean = 77.33 Median = 82

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

N-step TD Prediction

1 Idea: Look farther into the future when you do TD backup
(1, 2, 3, ..., n steps)

ID (1-step) 2-step 3-step n-step Monte Carlo
E RSN
® ®
@ O
® ®
E O

b
-

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Mathematics of N-step TD Prediction

1 Monte Carlo: R =r +y ., +y%r +--+y " r,

Ij TD Rt(l) t+1 + }/V (St+1)

» Use V to estimate remaining return

1 n-step TD:

= 2stepreturn: R? =7, +y, +7V,(s,.,)

. (n) n-1 n
s n-step return: R =y 4y, +yr 4y, w7V (s,,)

t

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Learning with N-step Backups

1 Backup (on-line or off-line):

AV,(s)=a|R" - V(s,)]

1 Error reduction property of n-step returns

maX‘E” {R"|s, =s}=-V" (S)‘ <y"max\V(s)-V" (S)‘
s . .) s
n step return
_ ~ % N V J
Maximum error using n-step return Maximum error using V

1 Using this, you can show that n-step methods converge

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Random Walk Examples

start

1 How does 2-step TD work here?
1 How about 3-step TD?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

A Larger Example

1 Task: 19 state

random walk
RMS error,

averaged over
first 10 episodes

1 Do you think there
1s an optimal n (for
everything)?

RMS error,
averaged over
first 10 episodes

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

ON-LINE
n-STEP TD

OFF-LINE
n-STEP TD

Averaging N-step Returns

1 n-step methods were introduced to help with One backup

TD(\) understanding
1 Idea: backup an average of several returns
= ¢.g. backup half of 2-step and half of 4-
step
1 1

Rtavg — ERt(z) + 5Rt(4)

b | —

1 Called a complex backup
= Draw each component

= Label with the weights for that
component

b | —

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Forward View of TD(A)

[TD(M) is a method for TD(A), A-return
averaging all n-step backups

= weight by A™! (time since
visitation)
= A-return:

A_ _ - n-1p(n)
k=0 M;A R (1-3) A

1 Backup using A-return:

AV(s)=a| R - V(s)]

=

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

A-return Weighting Function

Weight _;,

Ve

weight given to

th

DI

e 3-step retum

7/ decay by A
/

total area = 1

weight given to
actual, final return

07

Time —»

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

10

Relation to TD(0) and MC

1 A-return can be rewritten as:
T-1t-1

A - —f—
R'=(1-2) Y A"'R”+ AR
n=1
N ~ J H_/
Until termination After termination

A IfA=1, you get MC:

t

T-t-1
R)» _ (1_ 1) Eln—lRt(n) + lT_t_IR _ R
n=1

A If A =0, you get TD(0)

T-1-1

R,)L _ (1_0) Eon—lRt(n) + OT_I_IR _ Ier(l)
n=1

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

11

Forward View of TD(A) 11

1 Look forward from each state to determine update from
future states and rewards:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

12

A-return on the Random Walk

OFF-LINE
A-RETURN

RMS error, .
averaged over o
first 10 episodes ,_| “7"

A5 -

3

1 Same 19 state random walk as before
1 Why do you think intermediate values of A are best?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Backward View of TD(A)

1 The forward view was for theory

1 The backward view is for mechanism

1 New variable called eligibility trace e, (s)| X"

= On each step, decay all traces by yA and increment the
trace for the current state by 1

= Accumulating trace

accumulating eligibility trace

yAe,_(s) ifs=s,
e,(s) = :
yAe,_(s)+1 if s =s,

times of visits to a state

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

On-line Tabular TD(A)

Initialize V(s) arbitrarily and e(s) =0, for all s €S
Repeat (for each episode) :
Initialize s
Repeat (for each step of episode) :
a <— action given by s for s
Take action a, observe reward, r, and next state s’
O0<—r+yV(s)-V(s)
e(s)<—e(s) +1
For all s:
V(s) <= V(s)+ ade(s)
e(s) <= yAe(s)
s< '

Until s 1s terminal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

15

Backward View

6t = 7;‘+1 +)/I/t(st+1) - I/t(St)

1 Shout 0, backwards over time

1 The strength of your voice decreases with temporal
distance by yA

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

16

Relation of Backwards View to MC & TD(0)

1 Using update rule:
AV, (s) = aatet (s)

1 As before, if you set A to 0, you get to TD(0)
1 If you set Ato 1, you get MC but in a better way
» Can apply TD(1) to continuing tasks

= Works incrementally and on-line (instead of waiting to
the end of the episode)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

17

Forward View = Backward View

1 The forward (theoretical) view of TD(A) is equivalent to
the backward (mechanistic) view for off-line updating

1 The book shows:
EAVTD() = EAV (s,

\ J
Y Y

Backward updates Forward updates

/'

J

algebra shown in book

p—

S P (s) Tz_l I Yi()" S AV (s)I TEI I g()18
A S) = o) y t St S8y = o S8; y

Z) t=0 ; k=t ‘ t=0 t=0 k=t ‘
1 On-line updating with small o is similar

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

On-line versus Off-line on Random Walk

M Online TD(A)
OFF-LINE s B

on Random Walk
. A-RETURN
- Average +°7]
RMS error, ,5_ RMSE
averaged over over First

first 10 episodes | " 10 Trials 35 =N

A5

3

1 Same 19 state random walk

1 On-line performs better over a broader range of parameters

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

Control: Sarsa(\)

1 Save eligibility for state-action

pairs instead of just states Sarsa(A)
yAe,_(s,a)+1 ifs=s anda=aq, Y L
€I(S, Cl) =]
yre,_,(s,a) otherwise
(1-1) A

Qz+1(S7 a) = Qz(Sa a) + OC(Stet(S, a)

(1-1) A2 :
61 =rt+1 +yQt(St+]’at+1)_Qt(St’at)) .

Y =1 T L*‘— ST

y A

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

Sarsa(A) Algorithm

Initialize Q(s,a) arbitrarily and e(s,a) = 0, for all s,a
Repeat (for each episode) :

Initialize s, a

Repeat (for each step of episode) :

Take action a, observe r,s’

Choose a’ from s’ using policy derived from Q (e.g. ? - greedy)
0 <r+y0(s’,a")- O(s, a)
e(s,a)<—e(s,a) +1
For all s,a :
A(s,a) < 0O(s,a) + ade(s, a)
e(s,a) < yAe(s,a)
s<—sha<a'

Until s 1s terminal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

21

Sarsa(A) Gridworld Example

Action values increased Action values increased
Path taken by one-step Sarsa by Sarsa (k) with A=0.9
- -~ o ’
[
¥
[- hal |
' i‘ e R *| |y
A | Y s

1 With one trial, the agent has much more information about how to get
to the goal

= not necessarily the best way

[Can considerably accelerate learning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Three Approaches to Q(A)

Watkins's Q(A)
[How can we extend this to Q- % -~ s.qa

learning?

1 If you mark every state action
pair as eligible, you backup

1-A

non-greedy

over non-greedy policy (1-3) & .
s Watkins: Zero out 7

eligibility trace after a non- (= :

greedy action. Do max . -

when backing up at first oy - f,,st

non-greedy choice. %! action
1+ vyhe,_(s,a) ifs=s,a=a,0 _(s,a)=max_ Q_/(s,a)

e(s,a)= 0 if Q_,(s,,a,) = max_ Q, _(s,,a)

1 yAe,_ (s,a) otherwise

0,.1(8,a) = Q,(s,a) + ad,e,(s,a)
6t =l tYymax, Qt(St+l’a/) - Qz‘ (St ’at)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

23

Watkins’s Q(A)

Initialize Q(s,a) arbitrarily and e(s,a) = 0, for all s,a
Repeat (for each episode) :
Initialize s, a
Repeat (for each step of episode) :
Take action a, observe r,s’
Choose a’ from s’ using policy derived from Q (e.g. ? - greedy)
a <—argmax, Q(s", b) (if a ties for the max, then a < a')
S <—r+y0(s,a')- O(s,a)
e(s,a)<—e(s,a) +1
For all s,a:
A(s,a) < O(s,a) + ade(s,a)
Ifa’ = a’, then e(s,a) < yAe(s,a)
else e(s,a) < 0
s<—sa<a'

Until s is terminal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

24

Peng’s Q(\)

1 Disadvantage to Watkins’s
method:

= Early in learning, the
eligibility trace will be
“cut” (zeroed out)
frequently resulting in little
advantage to traces

1 Peng:

= Backup max action except
at end

= Never cut traces
1 Disadvantage:

= Complicated to implement

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Peng's Q(A

B Ji\

(1-1) A

]

(1-n) ¥

o

25

aive Q(A)

1 Idea: 1s it really a problem to
backup exploratory actions?

s Never zero traces

= Always backup max at
current action (unlike Peng
or Watkins’s)

[Is this truly naive?

1 Works well is preliminary
empirical studies

What 1s the backup diagram?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

Comparison Task

1 Compared Watkins’s, Peng’s, and Naive (called
McGovern’s here) Q(A) on several tasks.

s See McGovern and Sutton (1997). Towards a Better Q(
A) for other tasks and results (stochastic tasks,

continuing tasks, etc)

1 Deterministic gridworld with obstacles
« 10x10 gridworld
» 25 randomly generated obstacles
= 30 runs
«» =0.05,y=0.9,A=0.9, € =0.05, accumulating traces

From McGovern and Sutton (1997). Towards a better Q(A)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 27

Comparison Results

900

800

(] 8 ()} 2] ~J
o o =} o
o o o o o

Steps to goal for greedy policy

100

Policy steps
= Watkins
— Peng
-—- McGovem
1) 1 1 1 1 1 1 1 1]
0 20 40 60 80 100 120 140 160 180 200

Episodes

From McGovern and Sutton (1997). Towards a better Q(\)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

28

Convergence of the Q(A)’s

1 None of the methods are proven to converge.
s Much extra credit if you can prove any of them.
1 Watkins’s is thought to converge to Q"
 Peng’s is thought to converge to a mixture of Q" and Q"
[Naive - Q*?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

29

Eligibility Traces for Actor-Critic Methods

1 Critic: On-policy learning of V7. Use TD(A) as described
before.

1 Actor: Needs eligibility traces for each state-action pair.

1 We change the update equation:

p(s,a)+ad, ifa=aands=s,

Po(s,a) = { to D, (s,a)=p,(s,a)+ad.e(s,a)

p,(s,a) otherwise

1 Can change the other actor-critic update:

p,(s,a)+ a(St[l - 7(s, a)] ifa=a, and s =5,
tO le(S,a)=p,(s,a)+a5tet(s,a)

p,(s,a) otherwise

pz+1(saa) = {

yAe,_(s,a)+1-m (s,,a) if s=s anda=aq

h ,a) = i
where e (s, a) { vhe,_ (s, a) otherwise

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

30

Replacing Traces

1 Using accumulating traces, frequently visited states can
have eligibilities greater than 1

= This can be a problem for convergence

1 Replacing traces: Instead of adding 1 when you visit a
state, set that trace to 1

| | | || times of state visits

yAe,_(s) ifs=s,
e,(s) = :
1 ifts=s,

replacing trace

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 31

Replacing Traces Example

[Same 19 state random walk task as before
[Replacing traces perform better than accumulating traces over more

values of A
0.5

v

0.4 ?

accumulating !

RMS error tracesg?

at best o '
0.2 4 replacing

traces
0 0.2 0.4 0.6 0.8 |

A

32

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Why Replacing Traces?

[Replacing traces can significantly speed learning

1 They can make the system perform well for a broader set of
parameters

1 Accumulating traces can do poorly on certain types of tasks

wIong wWIong wWIong wWIong WINOng

: . . :
right right right right

Why is this task particularly onerous
for accumulating traces?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

:
right

33

More Replacing Traces

1 Off-line replacing trace TD(1) is identical to first-visit MC

1 Extension to action-values:

= When you revisit a state, what should you do with the
traces for the other actions?

= Singh and Sutton say to set them to zero:

1 ifts=s and a =aq,
e(s,a)=1 0 ifs=s and a =q,
yAe,_ (s, a) if 5=,

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

34

Implementation Issues

1 Could require much more computation
= But most eligibility traces are VERY close to zero

1 If you implement it in Matlab, backup is only one line of
code and is very fast (Matlab 1s optimized for matrices)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

35

Variable A

1 Can generalize to variable A

yAe _(s) il s=s,
e,(s) = .
yAe,_(s)+1 if s=y,

1 Here A 1s a function of time
s Could define

A =A(s,)or A =A%

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

36

Conclusions

1 Provides efficient, incremental way to combine MC and
TD

» Includes advantages of MC (can deal with lack of
Markov property)

» Includes advantages of TD (using TD error,
bootstrapping)

1 Can significantly speed learning

1 Does have a cost in computation

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

37

Something Here is Not Like the Other

a) Backward View

— T

—

——

b) Forward View

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

38

