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Tip for doing well

* Begin work on assignments early!
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Game tree (2=player, deterministic, turns)
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Minimax algorithm

* Perfect play for deterministic games

e Idea — select moves with highest minimax value.
That is, select the best achievable payoff against
best play by your opponent
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Example: ot-B pruning
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Example: ot-B pruning
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Why is it called ot-B?

« is the value of the best (highest-value) choice found so
far at any choice point along the path for MAX

e If vis worse than o, MAX will avoid it, so that branch can be
pruned.

B is the value of the best (lowest-value) choice found so
far at any choice point along the path for MIN

« If visworse than B, MIN will avoid it, so that branch can

be pruned.
Player
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If mis better than n,
we will never get to n

Player

Opponent




What if a game has a "chance element”?
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Chance nodes
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Expected value

e The sum of the probability of each possible
outcome multiplied by its value:

E(X)= Epl.xi

* Are there pathological cases where this
statistic could do something strange?

e Extreme values (“outliers")

e Functions that are a non-linear transformation
of the probability of winning
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Expected minimax value
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Expectiminimaxing

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:
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In Backgammon

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon = 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20 x (21 x 20)® ~ 1.2 x 1(°

As depth increases, probability of reaching a given node shrinks
= value of lookahead is diminished

a—(3 pruning is much less effective

TDGAMMON uses depth-2 search + very good EVAL
~ world-champion level
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Evaluation functions

e So cut off the search and evaluate leaves with
an evaluation function (as in H-MINIMAX)

e But do evaluation functions behave the same
way in stochastic games?

» Just need to order nodes in the right way, so
particular values are not so important.

* Chance nodes make things more difficult.
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Particular values DO matter

Order-preserving transformation >

DICE

400 400

Behaviour i1s preserved only by positive linear transformation of EVAL

Hence EVAL should be proportional to the expected payoff
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Partially Observable Games
(Games of Imperfect Information)

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game”

|ldea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals”

argmax, .. P(5) MINIMAX(RESULT(s,a)),

Monte Carlo approximation:

N
argmax, 1/N Y, MINIMAX(RESULT(s;a)),
i=1

“averaging over clairvoyance”
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Example: Kriegspiel

Maintain
belief states

“Illegal”
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Rollouts

 Play out a position to completion several

thousand times with different random dice
sequences.

* The best play is assumed to be the one
that produced the best outcome statistics
in the rollout.

* What program should select moves?
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TD Gammon

Tesauro 1992, 1994, 1995, ...

* White has just rolleda 5 and a
2 so can move one of his pieces

-

5 and one (possibly the same) 2

steps

* Objective is to advance dll
pieces to points 19-24 )

e Hittin
Y 08 4

1% 18 1716

o

* Doubling

« 30 pieces, 24 locations implies
enormous number of
configurations

« Effective branching factor of
400

white pieces move
counterclockwise

black pieces
move clockwise
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Multi-layer Neural Network

predicted probability
of winning, V,

TD error, V, -V, _'é

hidden units (40-80)

backgammon position (198 input units)
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Summary of TD-Gammon Results

Hidden  Training

Program Units Games Opponents Results

TD-Gam 0.0 40 300,000  other programs tied for best

TD-Gam 1.0 80 300,000 Robertie, Magriel, . . . —13 points /51 games
TD-Gam 2.0 40 800,000  various Grandmasters —7 points / 38 games
TD-Gam 2.1 80 1,500,000 Robertie —1 point/ 40 games
TD-Gam 3.0 80 1,500,000  Kazaros +6 points / 20 games

Bill Robertie: world-class human grandmaster and former World
Champion

TD-Gammon 2.1 plays at a strong master level that is extremely close to
equaling the world's best human planers. ...would be the favorite in a long
money game session or grueling tournament like the World Cup
competition (it never gets tired or careless).



A Few Details

e Reward: O at all times except those in
which the game is won, when it is 1

 Episodic (game = episode), undiscounted

* Gradient descent TD(A) with a multi-layer
neural network
* weights initialized o small random numbers
« backpropagation of TD error

 four input units for each point; unary encoding
of number of white pieces, plus other features

* Use of afterstates
 Learning during self-play
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MENACE (Michie, 1961)

“Matchbox Educable Noughts and Crosses Engine”
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Tic-Tac-Toe
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Assume an imperfect opponent: \ ,
—he/she sometimes makes mistakes } X’s move
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Learning an evaluation function

1. Make a table with one entry per state:

State

V(s) — estimated probability of winning: value

5 2
R 2. Now play lots of games.
1 win To pick our moves,

look ahead one step:

0 loss current state
: @m@ various possible

0 draw S next states

<' Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.
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X — the state before our greedy move
y — the state after our greedy move

ratory?  We increment each V(x)
toward V(y) — a backup :

V(x) <= V() + o [V(y) - V(x)]

/’

a small positive fraction,

the step —size parameter

A Temporal-Difference (TD) method
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