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CMPSCI 383 
October 4, 2011 

Adversarial Search Continued: 
Stochastic Games 
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Tip for doing well 

•  Begin work on assignments early! 
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Game tree (2=player, deterministic, turns) 
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Minimax algorithm 

•  Perfect play for deterministic games 

•  Idea — select moves with highest minimax value.  
That is, select the best achievable payoff against 
best play by your opponent 
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α-β pruning 
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α-β pruning 
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Example: α-β pruning 
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Example: α-β pruning 
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Example: α-β pruning 
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Example: α-β pruning 
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Why is it called α-β? 

•  α is the value of the best (highest-value) choice found so 
far at any choice point along the path for MAX 
•  If v is worse than α, MAX will avoid it, so that branch can be 

pruned. 

•  β is the value of the best (lowest-value) choice found so 
far at any choice point along the path for MIN  
•  If v is worse than β , MIN  will avoid it, so that branch can 

be pruned. 

If m is better than n, 
we will never get to n 
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What if a game has a “chance element”? 
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Chance nodes 

We know how 
to value the other 
nodes.  How do we 
value chance nodes? 
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Expected value 

•  The sum of the probability of each possible 
outcome multiplied by its value: 

•  Are there pathological cases where this 
statistic could do something strange? 
•  Extreme values (“outliers”) 
•  Functions that are a non-linear transformation 

of the probability of winning 

€ 

E(X) = pixi
i
∑
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Expected minimax value 

•  Now three different  
cases to evaluate,  
rather than just two. 
•  MAX 
•  MIN 
•  CHANCE 

EXPECTIMINIMAX(n) = 
 UTILITY(n), If terminal node 
 maxs ∈ successors(n) EXPRCTIMINIMAX(s), If n is MAX node 
 mins ∈ successors(n) EXPECTIMINIMAX(s), If n is MIN node 
 ∑s ∈ successors(n) P(s) • EXPECTIMINIMAX(s), If n is CHANCE node 
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Expectiminimaxing 
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In Backgammon 
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Evaluation functions  

•  So cut off the search and evaluate leaves with 
an evaluation function (as in H-MINIMAX) 

•  But do evaluation functions behave the same 
way in stochastic games? 
•  Just need to order nodes in the right way, so 

particular values are not so important. 

•  Chance nodes make things more difficult. 
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Particular values DO matter 

Order-preserving transformation  
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Partially Observable Games  
(Games of Imperfect Information) 

argmaxa ∑s P(s) MINIMAX(RESULT(s,a)),  

argmaxa 1/N ∑ MINIMAX(RESULT(si,a)),  
N 

i = 1 

Monte Carlo approximation: 

“averaging over clairvoyance” 
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Example: Kriegspiel 

Maintain 
belief states 
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Rollouts 

•  Play out a position to completion several 
thousand times with different random dice 
sequences.  

•  The best play is assumed to be the one 
that produced the best outcome statistics 
in the rollout. 

•  What program should select moves? 
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TD Gammon 

Tesauro 1992, 1994, 1995, ... 

•  White has just rolled a 5 and a 
2 so can move one of his pieces 
5 and one (possibly the same) 2 
steps 

•  Objective is to advance all 
pieces to points 19-24 

•  Hitting 
•  Doubling 
•  30 pieces, 24 locations implies 

enormous number of 
configurations 

•  Effective branching factor of 
400 
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Multi-layer Neural Network 
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Summary of TD-Gammon Results 

Bill Robertie: world-class human grandmaster and former World 
Champion 

TD-Gammon 2.1 plays at a strong master level that is extremely close to 
equaling the world’s best human planers. ….would be the favorite in a long 
money game session or grueling tournament like the World Cup 
competition  (it never gets tired or careless). 
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A Few Details 

•  Reward: 0 at all times except those in 
which the game is won, when it is 1 

•  Episodic (game = episode), undiscounted 
•  Gradient descent TD(λ) with a multi-layer 

neural network 
•  weights initialized to small random numbers 
•  backpropagation of TD error 
•  four input units for each point; unary encoding 

of number of white pieces, plus other features 
•  Use of afterstates 
•  Learning during self-play 
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MENACE  (Michie, 1961) 
“Matchbox Educable Noughts and Crosses Engine” 
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Tic-Tac-Toe 
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Assume an imperfect opponent:	


       —he/she sometimes makes mistakes	
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1. Make a table with one entry per state:	



2. Now play lots of games.	


	

To pick our moves, 	



            look ahead one step:	



State         V(s) – estimated probability of winning: value	
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1        win	
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0       draw	



x	



x	

x	

x	


o	

o	



o	

o	

o	

x	

 x	



o	

o	


o	

 o	

x	

x	

 x	

x	

o	



current state	



various possible	


next states	

*	



Just pick the next state with the highest	


estimated prob. of winning — the largest V(s);	


a greedy move.	



But 10% of the time pick a move at random;	


an exploratory move.	



Learning an evaluation function 
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“Exploratory” 	


move	



–	

  the state before our greedy move	


–	

   the state after our greedy move	



x	


y	



We increment each V(x)	


toward V(y) – a backup :	



a small positive fraction,	


the 	

step	

–	

size parameter	



←	

V(x)        V(x) + α [V(y) – V(x)]	



A Temporal-Difference (TD) method	



Backups 


