Adversarial Search

CMPSCT 383
September 29, 2011

Why are games interesting to AI?

« Simple to represent and reason about
* Must consider the moves of an adversary
e Time constraints

» Russell & Norvig say:
"Games, like the real world, therefore
require the ability to make some decision
even when calculating the optimal decision
is infeasible.

» Metareasoning: reasoning about reasoning

Searched up to 30 billion positions per move;
sometimes reaching a depth of 40 plies.

Chinook
1990, 1994

Silicon Graphics
World Draughts Cham-'-—** :

Dr. Marion Tinsley

best known is the four-color theorem (9). This
deceptively simple conjecture—that given an

arbitrary map with countries, you need at most
Chec kers Is SO|V9d four different colors to guarantee that no two
adjoining countries have the same color—has
Jonathan Schaeffer,* Neil Burch, Yngvi Bjornsson,t Akihiro Kishimoto,} been extremely difficult to prove analytically. In
Martin Miiller, Robert Lake, Paul Lu, Steve Sutphen 1976, a computational proof was demonstrated.

Despite the convincing result, some mathema-
The game of checkers has roughly 500 billion billion possible positions (5 x 10%°). The task of ticians were skeptical, distrusting proofs that had
solving the game, determining the final result in a game with no mistakes made by either player, is not been verified using human-derived theorems.
daunting. Since 1989, almost continuously, dozens of computers have been working on solving Although important components of the checkers

The game of checkers has roughly 500 billion billion possible positions (5 x 10°°). The task of
solving the game, determining the final result in a game with no mistakes made by either player, is
daunting. Since 1989, almost continuously, dozens of computers have been working on solving
checkers, applying state-of-the-art artificial intelligence techniques to the proving process. This
paper announces that checkers is now solved: Perfect play by both sides leads to a draw. This is the
most challenging popular game to be solved to date, roughly one million times as complex as
Connect Four. Artificial intelligence technology has been used to generate strong heuristic-based

game-playing programs, such as Deep Blue for chess. Solving a game takes this to the next level by
replacing the heuristics with perfection.

FDMONTON, ALRBRERTA, CANADA

DEPARTMENT OF

COMPUTING SCIENCE

23
22
21
20
i 19
Seeded Line b
17
16
Stored Boundary
L
Relevant Search Space 1o Number of
Pieces
Endgame Databases

Number of Positions (logarithmic)

Pieces Number of positions

1 120
2 6,972
3 261,224
4 7,092,774
5 148,688,232
6 2,503,611,964
7 34,779,531,480
8 406,309,208,481
9 4,048,627,642,976
10 34,778,882,769,216
Total 1-10 39,271,258,813,439
11 259,669,578,902,016
12 1,695,618,078,654,976
13 9,726,900,031,328,256
14 49,134,911,067,979,776
15 218,511,510,918,189,056
16 852,888,183,557,922,816
17 2,905,162,728,973,680,640
18 8,568,043,414,939,516,928
19 21,661,954,506,100,113,408
20 46,352,957,062,510,379,008
21 82,459,728,874,435,248,128
22 118,435,747,136,817,856,512
23 129,406,908,049,181,900,800
24 90,072,726,844,888,186,880
Total 1-24 500,995,484,682,338,672,639

Today's lecture

e Introduce search in adversarial
environments

» Key concepts
* Game tree
* Min and Max players
* Minimax value
* Methods for searching realistic game trees
 Alpha-beta pruning
* Approximate evaluation functions
* Games with chance elements

CSP terminology

» This data structure is o Whatisa
defined by the initial Game tree
game state and the legal
moves for each player

* This is the value of a What is the
node for a given player., minimax value
assuming that both
players play optimally to
the end of the game.

e This is alevel of the o Whatisa
search tree defined by Ply
a move by a single player

Game tree (2=player, deterministic, turns)

MAX (X)

X X X B
MIN (O) X X X

X X X

x|o x| [o] [x
MAX (X) o

x[olx] [x[o)
MIN (O) X X

x[o[x] [x[o[x] [x[o[X
TERMINAL | [O0]X| [0]0[X X

o X xjo| [xolo

Utility 1 0 +1

Minimax algorithm

* Perfect play for deterministic games

e Idea — select moves with highest minimax value.
That is, select the best achievable payoff against
best play by your opponent

MAX

MIN

11

Minimax algorithm

function MINIMAX-DECISION(state) returns an action

v MAX-VALUE(state)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U4— —00
for a,s in SUCCESSORS(state) do
v+ MAX(v, MIN-VALUE(S))
return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(Sstate)
U4 00
for a,s in SUCCESSORS(state) do
v4— MIN(v, MAX-VALUE(s))
return v

12

Properties of minimax

e Complete?
Yes (if tree is finite)

* Optimal?
Yes (against optimal opponent)

* Time complexity — O(b™)

« Space complexity — O(bm) (depth-first)

..but for chess, b # 35, m 100
Exact solution is completely infeasible

13

Adversarial search terminology

e This method can o Whatis
eliminate large portions Alpha-beta
of the game tree from pruning

consideration, thus
speeding up search.

This expression returns » What is an
an estimate of the Evaluation
expected utility of the function
game for a given

position

14

How does pruning work?

15

Using DFS, can we prune this tree?

MAX

MIN

16

Example: ot-B pruning

MAX

MIN

23

17

Example: ot-B pruning

MAX

MIN

23

<2

18

Example: ot-B pruning

MAX

MIN

19

Example: ot-B pruning

MAX

MIN

20

Example: ot-B pruning

MAX

MIN

21

Why is it called ot-B?

« is the value of the best (highest-value) choice found so
far at any choice point along the path for MAX

e If vis worse than o, MAX will avoid it, so that branch can be
pruned.

B is the value of the best (lowest-value) choice found so
far at any choice point along the path for MIN

« If visworse than B, MIN will avoid it, so that branch can

be pruned.
Player

Opponent

If mis better than n,
we will never get to n

Player

Opponent

(a)

(c) (d)

The a -/ algorithm

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game

v+ MAX-VALUE(state, —00, +00)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state, a, §) returns a utility value
inputs: state, current state in game
«, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(Sstate)
U4 —00
for a,s in SUCCESSORS(state) do
v MAaX(v, MIN-VALUE(S, ., 3))
if v > 3 then return v
a — MAX(a, v)
return v

24

The a -/ algorithm

function MIN-VALUE(state, o, §) returns a utility value
inputs: state, current state in game
«, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(State)
U4 +00
for a,s in SUCCESSORS(state) do
v4 MIN(v, MAX-VALUE(s, o, 3))
if v < a then return v
B« MIN(S, v)
return v

25

Comments on o-f pruning

* Pruning produces results that are exactly
equivalent to complete (unpruned) search

* Entire subtrees can be pruned.

* Ordering x)
 Node ordering can improve effectiveness ;
» Perfect ordering gives time complexity O(b™/?)

Branching factor goes from b to sgrt(b)

Thus, alpha-beta pruning can search twice as far as
ordinary minimax in equal time

» Repeated states are possible

Can avoid recomputing their value by using a hash table
of previous states, called a transposition table

26

..but search is still intfractable. What now?

« Stop the search before you reach
terminal states (using a cutoff-test)

 Evaluate nodes using an evaluation function
with properties such that it is...

* Able to order terminal states in the same way
as the true utility function

e Efficient to calculate
« Strongly correlated with the actual probability
of winning
e Sounds difficult. How can we create such
an evaluation function?

27

Cutting off

MinimaxCutoff is identical to MinimaxValue
except

1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

4-ply lookahead is a hopeless chess player!
e 4-ply ® human novice

» 8-ply ® typical PC, human master
o 12-ply # Deep Blue, Kasparov

28

Evaluation functions

« Typically calculate features — simple
characteristics of the game state that are
correlated with the probability of winning

« The evaluation function combine feature
values to produce a score

» Typically, evaluation functions are a
weighted linear function

Eval(x)=w, f,($)+w,f,(s)+ ...+ w [(s)= iwifi(s)

29

Example features

What would be some useful features for chess?

e Relative number of
» Bishops
» Knights
* Rooks
e Pawns
e Total number of pieces

* Has queen?
* Castled?

In check?

Distance of furthest
pawn from start

Relative freedom
(relative total number
of possible moves)

etc.

30

Evaluation functions

 Evaluation functions in the form of linear
equations make an assumption about
features. What is it?
Eval(x) = w, f,() + W, [,() + ..+ W, f, (5) = }jw e

Feature independence
» Is this assumption accurate?

31

Example features

What would be some useful features for chess?

e Relative number of
» Bishops
» Knights
* Rooks
e Pawns
e Total number of pieces

* Has queen?
* Castled?

In check?

Distance of furthest
pawn from start

Relative freedom
(relative total number
of possible moves)

etc.

32

Evaluation functions

e Evaluation functions in the form of linear
equations make an assumption about
features. What is it?

Eval(x)=w,f,(s) + w,[L($)+ ...+ w [(s)= Ew J.(8)
Feature independence
» Is this assumption accurate? No

* Does violating this assumption matter?

Often, No. As long as the ordering of
function values is accurate (not necessarily
the raw values), the results will be the same

33

How could you /earn a good
evaluation function?

34

Arthur Samuel 1901-1990

IBM Poughkeepsie Laboratory

Worked on machine learning
for the game of checkers
from 1949 through the 1960s

~1970 at Stanford AI Laboratory

35

Some Studies in Machine Learning
Using the Game of Checkers

Abstract: Two machine-learning procedures have been investigated in some detail using the game of
checkers. Enough work has been done to verify the fact that @ computer can be programmed so that it will
learn to play a beter game of checkers than can be played by the person who wrote the program. Further-

more, it can learn to do this in a remarkably short peried of time (8 or 10 hours of machine-playing timel
when given only the rules of the game, a sense of direction, and o redundant and incomplete list of
parameters which are thought to have something to do with the gome, but whose correct signs and relative
weights are unknown and unspecified. The principles of machine learning verified by these experiments
are, of course, applicable to many other situations.

\
/

I M \l (&\\ WA
PR

IBM Journal July 1959

/R N\ //k /I\

///\>4,
SN

36

Why Samuel chose checkers

* Checkers instead of chess so focus could be on learning

« "“Checkers contains all the characteristics of an intellectual activity
in which heuristic procedures and learning processes can play a
major role and in which these processes can be evaluated.”

* Not deterministic

e Can't explore every path (~10%0 choices of moves)

* A definite goal

» Definite rules that are known: leave learning the rules until later

« Need background knowledge against which learning performance
can be compared

* Familiar to lots of people so it is understandable

* Provides a convincing demonstration for those who don't believe
machines can learn; playing against humans "adds spice.”

* Many complications of real life are absent

37

Computational Challenges?

* Large search space

e Uncertainty

* Delayed reward

* Representation

 Time constraints ("situated”)

38

Deterministic Games in Practice

Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used a precomputed endgame database
defining perfect lola for all positions involving 8 or fewer pieces on
the board, a tota 0#444 billion positions.

Chess: Deep Blue defeated human world champion Garry Kasparov in
a six-game match in 1997. Deep Blue searches 200 million positions
per second, uses very sophisticated evaluation, and undisclosed
methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers,
who are too good.

Go: human champions refuse to compete against computers, who are
too bad. In go, b > 300, so most programs use pattern knowledge
bases to suggest plausible moves.

39

What are the
big ideas for today?

40

Next Class

e Stochastic and Partially Observable Games
e Secs. 5.5-5.8

41

What if a game has a "chance element”?

I~ N ‘IV"'V
| |
> N > «

42

What if a game has a "chance element”?

MAX

CHANCE

u_‘a
(e 2]

MAX

Y

TERMINAL

))
1/36
5.6
\/ \/
1/36
6.6
A We know how

to value the other
nodes. How do we
Ny value chance nodes?

43

Expected value

e The sum of the probability of each possible
outcome multiplied by its value:

E(X)= Epl.xi

* Are there pathological cases where this
statistic could do something strange?

e Extreme values (“outliers")

e Functions that are a non-linear transformation
of the probability of winning

44

Expected minimax value

e Now three different MAx A

cases to evaluate

. ’ CHANCE (0 O O - O ®
rather than just two. AR I A
ot MAX MIN U v
« MIN
° CHANCE CHANCE o

MAX .1 8..5 A 6‘

EXPECTED-MINIMAX-VALUE(n) = ™% S
UTILITY(n), If terminal node
MAXs ¢ syccessors(n) MINIMAX-VALUE(s), If MAX node
MiN ¢ quccessorsiy MINIMAX-VALUE(s), If MIN node
>s & successors(n) F(5) - EXPECTEDMINIMAX(s), If CHANCE node

45

