
1 

CMPSCI 383 
September 29, 2011 

Adversarial Search 



2 

Why are games interesting to AI? 

•  Simple to represent and reason about 
•  Must consider the moves of an adversary 
•  Time constraints 
•  Russell & Norvig say: 

“Games, like the real world, therefore 
require the ability to make some decision 
even when calculating the optimal decision 
is infeasible. 

•  Metareasoning: reasoning about reasoning 
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Searched up to 30 billion positions per move; 
sometimes reaching a depth of 40 plies. 

1997 



4 Dr. Marion Tinsley 

Chinook 
1990, 1994 
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Today’s lecture 

•  Introduce search in adversarial 
environments 

•  Key concepts 
•  Game tree 
•  Min and Max players 
•  Minimax value 

•  Methods for searching realistic game trees 
•  Alpha-beta pruning 
•  Approximate evaluation functions 
•  Games with chance elements 
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CSP terminology 

•  This data structure is 
defined by the initial 
game state and the legal 
moves for each player 

•  This is the value of a 
node for a given player, 
assuming that both 
players play optimally to 
the end of the game. 

•  This is a level of the 
search tree defined by 
a move by a single player 

•  What is a  
Game tree  

•  What is the 
minimax value 

•  What is a  
Ply 
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Game tree (2=player, deterministic, turns) 
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Minimax algorithm 

•  Perfect play for deterministic games 

•  Idea — select moves with highest minimax value.  
That is, select the best achievable payoff against 
best play by your opponent 
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Minimax algorithm 
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Properties of minimax 

•  Complete? 
Yes (if tree is finite) 

•  Optimal? 
Yes (against optimal opponent) 

•  Time complexity — O(bm) 

•  Space complexity — O(bm) (depth-first) 

…but for chess, b ≈ 35, m ≈100  
Exact solution is completely infeasible 
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Adversarial search terminology 

•  This method can 
eliminate large portions 
of the game tree from 
consideration, thus 
speeding up search. 

•  This expression returns 
an estimate of the 
expected utility of the 
game for a given 
position 

•  What is 
Alpha-beta 
pruning 

•  What is an  
Evaluation 
function  
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How does pruning work? 
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Using DFS, can we prune this tree? 
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Example: α-β pruning 
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Example: α-β pruning 
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Example: α-β pruning 
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Example: α-β pruning 
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Example: α-β pruning 
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Why is it called α-β? 

•  α is the value of the best (highest-value) choice found so 
far at any choice point along the path for MAX 
•  If v is worse than α, MAX will avoid it, so that branch can be 

pruned. 

•  β is the value of the best (lowest-value) choice found so 
far at any choice point along the path for MIN  
•  If v is worse than β , MIN  will avoid it, so that branch can 

be pruned. 

If m is better than n, 
we will never get to n 
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The α-β algorithm 
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The α-β algorithm 
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•  Pruning produces results that are exactly 
equivalent to complete (unpruned) search 

•  Entire subtrees can be pruned. 
•  Ordering 

•  Node ordering can improve effectiveness 
•  Perfect ordering gives time complexity O(bm/2) 
•  Branching factor goes from b to sqrt(b) 
•  Thus, alpha-beta pruning can search twice as far as 

ordinary minimax in equal time 
•  Repeated states are possible 

•  Can avoid recomputing their value by using a hash table 
of previous states, called a transposition table 

Comments on α-β pruning 
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…but search is still intractable. What now? 

•  Stop the search before you reach  
terminal states (using a cutoff-test) 

•  Evaluate nodes using an evaluation function 
with properties such that it is... 
•  Able to order terminal states in the same way 

as the true utility function 
•  Efficient to calculate 
•  Strongly correlated with the actual probability 

of winning 
•  Sounds difficult.  How can we create such 

an evaluation function? 
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Cutting off 

MinimaxCutoff is identical to MinimaxValue 
except 

1.  Terminal? is replaced by Cutoff? 
2.  Utility is replaced by Eval 

4-ply lookahead is a hopeless chess player! 

•  4-ply ≈ human novice 
•  8-ply ≈ typical PC, human master 
•  12-ply ≈ Deep Blue, Kasparov 
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Evaluation functions 

•  Typically calculate features — simple 
characteristics of the game state that are 
correlated with the probability of winning 

•  The evaluation function combine feature 
values to produce a score 

•  Typically, evaluation functions are a 
weighted linear function 

€ 

Eval(x) = w1 f1(s) + w2 f2(s) + ...+ wn fn (s) = wi fi(s)
i=1

n

∑
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Example features 

•  Relative number of 
•  Bishops 
•  Knights 
•  Rooks 
•  Pawns 
•  Total number of pieces 

•  Has queen? 
•  Castled? 

•  In check? 
•  Distance of furthest 

pawn from start 
•  Relative freedom 

(relative total number 
of possible moves) 

•  etc. 

What would be some useful features for chess? 



31 

Evaluation functions 

•  Evaluation functions in the form of linear 
equations make an assumption about 
features.  What is it?  

•  Is this assumption accurate? 
€ 

Eval(x) = w1 f1(s) + w2 f2(s) + ...+ wn fn (s) = wi fi(s)
i=1

n

∑
Feature independence 
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Evaluation functions 

•  Evaluation functions in the form of linear 
equations make an assumption about 
features.  What is it?  

•  Is this assumption accurate? 
•  Does violating this assumption matter? € 

Eval(x) = w1 f1(s) + w2 f2(s) + ...+ wn fn (s) = wi fi(s)
i=1

n

∑
Feature independence 

No 

Often, No.  As long as the ordering of  
function values is accurate (not necessarily 
the raw values), the results will be the same 
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How could you learn a good 
evaluation function? 



35 

Arthur Samuel 1901-1990 

IBM Poughkeepsie Laboratory 
Worked on machine learning 
for the game of checkers 
from 1949 through the 1960s 

~1970 at Stanford AI Laboratory 
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IBM Journal July 1959 
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Why Samuel chose checkers 

•  Checkers instead of chess so focus could be on learning 
•  “Checkers contains all the characteristics of an intellectual activity 

in which heuristic procedures and learning processes can play a 
major role and in which these processes can be evaluated.” 
•  Not deterministic 
•  Can’t explore every path (~1040 choices of moves) 
•  A definite goal 
•  Definite rules that are known: leave learning the rules until later 
•  Need background knowledge against which learning performance 

can be compared 
•  Familiar to lots of people so it is understandable 
•  Provides a convincing demonstration for those who don’t believe 

machines can learn; playing against humans “adds spice.”  
•  Many complications of real life are absent 
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Computational Challenges? 

•  Large search space 
•  Uncertainty 
•  Delayed reward 
•  Representation 
•  Time constraints (“situated”) 



39 

Deterministic Games in Practice 

•  Checkers: Chinook ended 40-year-reign of human world champion 
Marion Tinsley in 1994. Used a precomputed endgame database 
defining perfect play for all positions involving 8 or fewer pieces on 
the board, a total of 444 billion positions. 

•  Chess: Deep Blue defeated human world champion Garry Kasparov in 
a six-game match in 1997. Deep Blue searches 200 million positions 
per second, uses very sophisticated evaluation, and undisclosed 
methods for extending some lines of search up to 40 ply. 

•  Othello: human champions refuse to compete against computers, 
who are too good. 

•  Go: human champions refuse to compete against computers, who are 
too bad. In go, b > 300, so most programs use pattern knowledge 
bases to suggest plausible moves. 
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What are the  
big ideas for today? 
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Next Class 

•  Stochastic and Partially Observable Games 
•  Secs. 5.5–5.8 
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What if a game has a “chance element”? 
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What if a game has a “chance element”? 

We know how 
to value the other 
nodes.  How do we 
value chance nodes? 
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Expected value 

•  The sum of the probability of each possible 
outcome multiplied by its value: 

•  Are there pathological cases where this 
statistic could do something strange? 
•  Extreme values (“outliers”) 
•  Functions that are a non-linear transformation 

of the probability of winning 

€ 

E(X) = pixi
i
∑
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Expected minimax value 

•  Now three different  
cases to evaluate,  
rather than just two. 
•  MAX 
•  MIN 
•  CHANCE 

EXPECTED-MINIMAX-VALUE(n) = 
 UTILITY(n), If terminal node 
 maxs ∈ successors(n) MINIMAX-VALUE(s), If MAX node 
 mins ∈ successors(n) MINIMAX-VALUE(s), If MIN node 
 ∑s ∈ successors(n) P(s) • EXPECTEDMINIMAX(s), If CHANCE node 


