
1

CMPSCI 383
September 29, 2011

Adversarial Search

2

Why are games interesting to AI?

•  Simple to represent and reason about
•  Must consider the moves of an adversary
•  Time constraints
•  Russell & Norvig say:

“Games, like the real world, therefore
require the ability to make some decision
even when calculating the optimal decision
is infeasible.

•  Metareasoning: reasoning about reasoning

3

Searched up to 30 billion positions per move;
sometimes reaching a depth of 40 plies.

1997

4 Dr. Marion Tinsley

Chinook
1990, 1994

5

6

7

8

Today’s lecture

•  Introduce search in adversarial
environments

•  Key concepts
•  Game tree
•  Min and Max players
•  Minimax value

•  Methods for searching realistic game trees
•  Alpha-beta pruning
•  Approximate evaluation functions
•  Games with chance elements

9

CSP terminology

•  This data structure is
defined by the initial
game state and the legal
moves for each player

•  This is the value of a
node for a given player,
assuming that both
players play optimally to
the end of the game.

•  This is a level of the
search tree defined by
a move by a single player

•  What is a
Game tree

•  What is the
minimax value

•  What is a
Ply

10

Game tree (2=player, deterministic, turns)

11

Minimax algorithm

•  Perfect play for deterministic games

•  Idea — select moves with highest minimax value.
That is, select the best achievable payoff against
best play by your opponent

12

Minimax algorithm

13

Properties of minimax

•  Complete?
Yes (if tree is finite)

•  Optimal?
Yes (against optimal opponent)

•  Time complexity — O(bm)

•  Space complexity — O(bm) (depth-first)

…but for chess, b ≈ 35, m ≈100
Exact solution is completely infeasible

14

Adversarial search terminology

•  This method can
eliminate large portions
of the game tree from
consideration, thus
speeding up search.

•  This expression returns
an estimate of the
expected utility of the
game for a given
position

•  What is
Alpha-beta
pruning

•  What is an
Evaluation
function

15

How does pruning work?

16

Using DFS, can we prune this tree?

17

Example: α-β pruning

18

Example: α-β pruning

19

Example: α-β pruning

20

Example: α-β pruning

21

Example: α-β pruning

22

Why is it called α-β?

•  α is the value of the best (highest-value) choice found so
far at any choice point along the path for MAX
•  If v is worse than α, MAX will avoid it, so that branch can be

pruned.

•  β is the value of the best (lowest-value) choice found so
far at any choice point along the path for MIN
•  If v is worse than β , MIN will avoid it, so that branch can

be pruned.

If m is better than n,
we will never get to n

24

The α-β algorithm

25

The α-β algorithm

26

•  Pruning produces results that are exactly
equivalent to complete (unpruned) search

•  Entire subtrees can be pruned.
•  Ordering

•  Node ordering can improve effectiveness
•  Perfect ordering gives time complexity O(bm/2)
•  Branching factor goes from b to sqrt(b)
•  Thus, alpha-beta pruning can search twice as far as

ordinary minimax in equal time
•  Repeated states are possible

•  Can avoid recomputing their value by using a hash table
of previous states, called a transposition table

Comments on α-β pruning

27

…but search is still intractable. What now?

•  Stop the search before you reach
terminal states (using a cutoff-test)

•  Evaluate nodes using an evaluation function
with properties such that it is...
•  Able to order terminal states in the same way

as the true utility function
•  Efficient to calculate
•  Strongly correlated with the actual probability

of winning
•  Sounds difficult. How can we create such

an evaluation function?

28

Cutting off

MinimaxCutoff is identical to MinimaxValue
except

1.  Terminal? is replaced by Cutoff?
2.  Utility is replaced by Eval

4-ply lookahead is a hopeless chess player!

•  4-ply ≈ human novice
•  8-ply ≈ typical PC, human master
•  12-ply ≈ Deep Blue, Kasparov

29

Evaluation functions

•  Typically calculate features — simple
characteristics of the game state that are
correlated with the probability of winning

•  The evaluation function combine feature
values to produce a score

•  Typically, evaluation functions are a
weighted linear function

€

Eval(x) = w1 f1(s) + w2 f2(s) + ...+ wn fn (s) = wi fi(s)
i=1

n

∑

30

Example features

•  Relative number of
•  Bishops
•  Knights
•  Rooks
•  Pawns
•  Total number of pieces

•  Has queen?
•  Castled?

•  In check?
•  Distance of furthest

pawn from start
•  Relative freedom

(relative total number
of possible moves)

•  etc.

What would be some useful features for chess?

31

Evaluation functions

•  Evaluation functions in the form of linear
equations make an assumption about
features. What is it?

•  Is this assumption accurate?
€

Eval(x) = w1 f1(s) + w2 f2(s) + ...+ wn fn (s) = wi fi(s)
i=1

n

∑
Feature independence

32

Example features

•  Relative number of
•  Bishops
•  Knights
•  Rooks
•  Pawns
•  Total number of pieces

•  Has queen?
•  Castled?

•  In check?
•  Distance of furthest

pawn from start
•  Relative freedom

(relative total number
of possible moves)

•  etc.

What would be some useful features for chess?

33

Evaluation functions

•  Evaluation functions in the form of linear
equations make an assumption about
features. What is it?

•  Is this assumption accurate?
•  Does violating this assumption matter? €

Eval(x) = w1 f1(s) + w2 f2(s) + ...+ wn fn (s) = wi fi(s)
i=1

n

∑
Feature independence

No

Often, No. As long as the ordering of
function values is accurate (not necessarily
the raw values), the results will be the same

34

How could you learn a good
evaluation function?

35

Arthur Samuel 1901-1990

IBM Poughkeepsie Laboratory
Worked on machine learning
for the game of checkers
from 1949 through the 1960s

~1970 at Stanford AI Laboratory

36

IBM Journal July 1959

37

Why Samuel chose checkers

•  Checkers instead of chess so focus could be on learning
•  “Checkers contains all the characteristics of an intellectual activity

in which heuristic procedures and learning processes can play a
major role and in which these processes can be evaluated.”
•  Not deterministic
•  Can’t explore every path (~1040 choices of moves)
•  A definite goal
•  Definite rules that are known: leave learning the rules until later
•  Need background knowledge against which learning performance

can be compared
•  Familiar to lots of people so it is understandable
•  Provides a convincing demonstration for those who don’t believe

machines can learn; playing against humans “adds spice.”
•  Many complications of real life are absent

38

Computational Challenges?

•  Large search space
•  Uncertainty
•  Delayed reward
•  Representation
•  Time constraints (“situated”)

39

Deterministic Games in Practice

•  Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used a precomputed endgame database
defining perfect play for all positions involving 8 or fewer pieces on
the board, a total of 444 billion positions.

•  Chess: Deep Blue defeated human world champion Garry Kasparov in
a six-game match in 1997. Deep Blue searches 200 million positions
per second, uses very sophisticated evaluation, and undisclosed
methods for extending some lines of search up to 40 ply.

•  Othello: human champions refuse to compete against computers,
who are too good.

•  Go: human champions refuse to compete against computers, who are
too bad. In go, b > 300, so most programs use pattern knowledge
bases to suggest plausible moves.

40

What are the
big ideas for today?

41

Next Class

•  Stochastic and Partially Observable Games
•  Secs. 5.5–5.8

42

What if a game has a “chance element”?

43

What if a game has a “chance element”?

We know how
to value the other
nodes. How do we
value chance nodes?

44

Expected value

•  The sum of the probability of each possible
outcome multiplied by its value:

•  Are there pathological cases where this
statistic could do something strange?
•  Extreme values (“outliers”)
•  Functions that are a non-linear transformation

of the probability of winning

€

E(X) = pixi
i
∑

45

Expected minimax value

•  Now three different
cases to evaluate,
rather than just two.
•  MAX
•  MIN
•  CHANCE

EXPECTED-MINIMAX-VALUE(n) =
 UTILITY(n), If terminal node
 maxs ∈ successors(n) MINIMAX-VALUE(s), If MAX node
 mins ∈ successors(n) MINIMAX-VALUE(s), If MIN node
 ∑s ∈ successors(n) P(s) • EXPECTEDMINIMAX(s), If CHANCE node

