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Today's lecture

* Local Search
* Hill-climbing
Simulated annealing
Local beam search
Genetic algorithms
Genetic programming
Local search in continuous state spaces



Recall: Evaluating a search strategy

» Completeness — Does it always find a
solution if one exists?

« Optimality — Does it find the best
solution?

» Time complexity
* Space complexity



Example: Breadth-first search

* Complete? * Yes (if b finite)
e Optimal? * Yes, if cost = 1 per step
Not optimal in general
e Time o 1+b+b2+b3+  +bl+b(bd-1) = O(b?)

e Space e O(bd)



Is O(bd*!) a big deal?

Depth Time Memory

2 11 sec 1 megabyte
4 11 sec 106 megabytes
6 19 min 10 gigabytes
8 31 hours 1 terabytes
10 129 days | 101 terabytes
12 35 years 10 petabytes
14 3523 years 1 exabyte

How can we ease up on completeness
and optimality in the interest of improving
time and space complexity?



Local search algorithms

* In many optimization problems, the path to
the goal is irrelevant; the goal state itself
is the solution

e In sug:h cases, we can use local search
algorithms

» keep a single "current” state, try to
improve it



What is unique about local search?

* Many search problems only require finding
a goal state, not the path to that goal state

» Examples

» Actual physical (vs. virtual) navigation

* Configuration problems — e.g., n-Queens
problem, determining good compiler parameter
settings

* Design problems — e.g., VLSI layout or oil
pipeline network design

« State space is set of configurations.



Example: n-queens

* Put nqueens on an n x nboard with no two
queens on the same row, column, or diagonal




Optimization Problems

Aim is to find the best state
according to an objective function.

No goal test
No path cost

cf. Evolution



Why use local search?

* Low memory requirements
Usually constant

e Effective

Can often find good solutions in extremely large
state spaces
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State-space landscape
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Hill-climbing search ("Steepest Ascent” version)

* Like "trying to find the top of Mount Everest in a
thick fog while suffering from amnesia.”

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current<— MAKE- NODE(INITIAL-STATE[problem))

loop do
neighbor < a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current < neighbor
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Challenges for hill climbing

e Local maxima

e Once a local maximum is reached,
there is no way to backtrack
or move out of that maximum

* Ridges

 Ridges can produce a
series of local maxima

e Plateaux

e Hillclimbing can have difficult time finding its
way off of a flat portion of the state space
landscape
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Hill-climbing search: 8-queens problem

18 14 13 14
Complete-state h e
formulation 1 | s || || e

14 . 18 15 . 14
14 w 16 16

Actions: move a w - w

. 16
single queen to
any other square W61 1 (S W (5] W
in same column 18 A W8] 15 A\

14 17.14.18

* h=number of cJDC(ir's of queens that are attacking each
other, either directly or indirectly

e h=17for the above state



Hill-climbing search: 8-queens problem

+ A local minimum with h = 1
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A state-space landscape

From: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html
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Another state-space landscape

From: Richard Wein (2002). Not a Free Lunch But a Box of Chocolates. http://www.talkorigins.org/design/faqs/nfl/
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Variants of local hill climbing

« Stochastic hill climbing

 Select randomly from all moves that improve
the value of the evaluation function

* First-choice hill climbing
» Generate successors randomly and select the
first improvement
e Random-restart hill climbing

« Conducts a series of hill-climbing searches,
starting from random positions

« Very frequently used general method in AL

18



Simulated annealing search

» Tdea: escape local maxima by allowing some
"bad” moves but gradually decrease their
frequency

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current <~ MAKE-NODE(INITIAL-STATE[problem])
for t+ 1toocdo
T+ schedule[{]
if 7= 0 then return current
nezt<— a randomly selected successor of current
AE+ VALUE[nezl] — VALUE|[current]
if AE > 0 then current < next

else current < next only with probability e® /T
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Properties of simulated annealing search

* One can prove: If T decreases slowly
enough, then simulated annealing search
will find a global optimum with probability
approaching 1

» Widely used in VLSI layout, airline
scheduling, etc.
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Local beam search

* Analogy

 Hill-climbing — "...trying to find the top of Mf.
Everest in a thick fog while suffering amnesia.”

* Local beam search — Doing this with several
friends, each of whom has a short-range radio
and an altimeter.
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Local beam search

* Keep track of kstates rather than just one

e Start with krandomly generated states

e At each iteration, all the successors of all k states
are geherated

« If any one is a goal state, stop; else select the k best
successors from the complete list and repeat

e Stochastic beam search — Select successors at
random weighted by value
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Genetic algorithms

* A variant of stochastic beam search where
new states are generated by combining
existing states

* Basic components

» Population — A set of states, initially generated
randomly

o Fitness function — An evaluation function

* Reproduction— A method for generating new
states from pairs of old ones (e.g., crossover)

* Mutation — A method for randomly modifying
states to create variation in the population
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Genetic algorithms
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* Fitness function: number of non-attacking pairs of
queens (min= 0, max = 8 x 7/2 = 28)

o 24/(24+23+20+11) = 31%

o 23/(24+23+20+11) = 29% etc
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Genetic algorithms
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Genetic Programming

A specialization of genetic algorithms
where each individual is a program
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GP Genetic Operators

Crossover

e Subtree crossover

Crossover
Point \ .+

Parents

° SUbTr'ee mutation Parents

( Point
/{)\3
X y

Randomly Generated
Sub-tree

Mutation

Offspring

> Offspring

N (x/2)43

. GARBAGE |

Mutation
Point

27



Local Search in Continuous Spaces

» Spaces consisting of real-valued vectors
* Can discretize the space

e Gradient Ascent (descent)

 Line search

* Newton-Raphson

» Constrained optimization
 Linear Programming
e Convex optimization



Gradient Methods

Gradient methods compute
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to increase/reduce f, e.g., by X «— x + aV f(x)

Sometimes can solve for V f(x) = () exactly (e.g., with one aty).
Newton—Raphson (1664, 1690) iterates x < x — H'(x)V f(x)
to solve V f(x) = 0, where H;; =9 f/0x;0x;
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Gradient Descent
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Gradient Descent: Rosenbrock Function
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Gradient Descent
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Newton Raphson
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Conjugate Gradient Method
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Linear Programming
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Convex Optimization

concave convex
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Local Search

* In many optimization problems, the path to
the goal is irrelevant; the goal state itself
is the solution

e In sug:h cases, we can use local search
algorithms

» keep a single "current” state, try to
improve it
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Next Class

e Nondeterministic Actions and Partial
Observations; Online Search

e Sec.4.3,44,45
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