
1 

CMPSCI 383 
September 20, 2011 

Informed (Heuristic) Search 



2 

Tip for doing well 

Begin Assignments Early 



3 

Today’s lecture 

Informed (Heuristic) search methods 

•  Best-First Search 
•  Greedy Best-First Search  
•  A* search 
•  Heuristic functions 



4 

Review: Uninformed search strategies 

•  Breadth-first search 
•  Uniform-cost search 
•  Depth-first search 
•  Depth-limited search 
•  Iterative deepening depth-first search 



5 

Review 



6 

Review 

•  Breadth-first search 
•  Selects shallowest unexpanded node 
•  FIFO queue 

•  Uniform-cost search
•  Selects node with lowest path cost 
•  Priority queue by path cost 

•  Depth-first search 
•  Selects deepest unexpanded node 
•  LIFO queue (stack) 

•  Depth-limited search 
•  Depth-first with nodes at depth limit treated as having no successors 

•  Iterative deepening depth-first search 
•  Repeated depth-limited with increasing limit until goal found 

Note: step costs 
assumed non-negative 



7 

Review: How do you evaluate a search strategy? 

•  Completeness — Does it always find a 
solution if one exists? 

•  Optimality — Does it find the best 
solution? 

•  Time complexity 
•  Space complexity 



8 

Informed (heuristic) search strategies 

Use problem-specific knowledge 
beyond what is given in the problem 
definition 



9 

Best-First Search 

•  Idea: use an evaluation function f(n) 
•  For each node, gives an estimate of "desirability” 
 Expand most desirable unexpanded node 

•  Implementation: 
 Order the nodes in fringe in decreasing order of 
desirability 

•  Special cases: 
•  greedy best-first search 
•  A* search 



10 

Heuristic function 

•   heuristic function h(n) — estimated cost 
of the cheapest path form the state at 
node n to a goal state. 

•  “Heuristic” 
•  “proceeding to a solution by trial and error or 

by rules that are only loosely defined.” * 
•  “a technique designed to solve a problem that 

ignores whether the solution can be proven to 
be correct, but which usually produces a good 
solution or solves a simpler problem that 
contains or intersects with the solution of the 
more complex problem.” ** 

*Oxford American Dictionary; **Wikipedia 



11 

Greedy Best-First 

•  Evaluation function f(n) = h(n) (heuristic)   
= estimate of cost from n ’s state to goal 

•  e.g., hSLD(n) = straight-line distance from 
n’s state to goal state in a navigation 
problem 

•  Greedy best-first search expands the node 
that appears to be closest to goal 



12 

Rumania (with step costs in km) 



13 

Greedy Best-First Example 

Heuristic = hSLD 



14 

Greedy Best-First Example 



15 

Greedy Best-First Example 



16 

Greedy Best-First Example 



17 

Rumania (with step costs in km) 



18 

Properties of Greedy Best-First Search 

•  Complete?  No – can get stuck in loops, e.g., 
Iasi  Neamt  Iasi  Neamt  …            
(But graph search version is complete in finite spaces.) 

•  Time?  O(bm), but a good heuristic can give 
dramatic improvement (m = max depth of search space) 

•  Space?  O(bm) -- keeps all nodes in memory 

•  Optimal?  No 



19 

A* Search 

•  Main Idea: avoid expanding paths that are 
already expensive 

•  Evaluation function:  f(n) = g(n) + h(n) 

•  g(n) = cost so far to reach n 
•  h(n) = estimated cost of cheapest path from n 

to goal 
•  f(n) = estimated total cost of cheapest path 

through n to goal 



20 

A* Search Example 



21 

A* Search Example 



22 

A* Search Example 



23 

A* Search Example 



24 

A* Search Example 



25 

A* Search Example 



26 

Admissible Heuristics 

•  A heuristic h(n) is admissible if for every node n, 
 h(n) ≤ h*(n), where h*(n) is the true cost to reach 
the goal state from the state of node n. 

•  An admissible heuristic never overestimates the 
cost to reach the goal, i.e., it is optimistic 

•  Example: hSLD(n) (never overestimates the actual 
road distance) 

•  Theorem: If h(n) is admissible, A* using TREE-
SEARCH is optimal 



27 

Why Admissibility  Optimality 

When A* terminates its search, it has found a 
path whose actual cost is lower than the 
estimated cost of any path through any frontier 
node. But since those estimates are optimistic, A* 
can safely ignore those nodes. In other words, A* 
will never overlook the possibility of a lower-cost 
path and so is optimal. 



28 

Optimality of A* (proof fragment) 

•  Suppose some suboptimal goal G2 has been generated and is in 
the frontier. Let n be an unexpanded node in the frontier such 
that n is on a shortest path to an optimal goal G. 

•  f(n) = g(n) + h(n) ≤ C*    since h is optimistic 
•  f(G2)  = g(G2) > C*         since h(G2) = 0 and  G2 is suboptimal 

Hence f(G2) > f(n), and A* will never expand G2 using TREE-SEARCH 



29 

Consistent Heuristics 
•  A heuristic is consistent if for every node n, every successor 

n' of n generated by any action a, 

    h(n) ≤ c(n,a,n') + h(n') 

•  If h is consistent, we have 

f(n')  = g(n') + h(n')  
       = g(n) + c(n,a,n') + h(n')  
       ≥ g(n) + h(n)  
       = f(n) 

•  i.e., f(n) is non-decreasing along any path. 



30 

Consistent Heuristics  

•  Theorem: If h(n) is consistent, when A* 
selects a node for expansion, the least cost 
path to it has already been found. 

•  Theorem: If h(n) is consistent, A* using 
GRAPH-SEARCH is optimal 

•  Also: consistency  admissibility (but not 
conversely) 



31 

Optimality of A* 

•  A* expands nodes in order of increasing f value 
•  Gradually adds "f-contours" of nodes  

•  Contour i has all nodes with f=fi, where fi < fi+1 

•  So the first goal node expanded must be optimal 
because f will be the true cost and all later nodes 
will cost more. 



32 

Properties of A* 

•  Complete? Yes (unless there are infinitely many 
nodes with f ≤ f(G) ) 

•  Time? Exponential 
•  Space? Keeps all nodes in memory 
•  Optimal? Yes if h(n) is admissible and consistent 

•  A* is optimally efficient for any given heuristic 
function 
•  Aside from ties in f, A* expands every node necessary to 

prove that we’ve found the shortest path, and no other 
nodes. 



33 

Admissible Heuristics 

E.g., for the 8-puzzle: 

•  h1(n) = number of misplaced tiles 
•  h2(n) = total Manhattan distance 
(i.e., no. of squares from desired location of each tile) 

•  h1(S) = ?  
•  h2(S) = ?  

8 
3+1+2+2+2+3+3+2 = 18  



34 

Relative benefit of heuristic functions 



35 

Dominance 

•  If h2(n) ≥ h1(n) for all n (both admissible) 
•  then h2 dominates h1  
•  h2 is better for search 

•  Typical search costs (average number of nodes 
expanded): 

•  d=12  IDS = 3,644,035 nodes 
 A*(h1) = 227 nodes  
 A*(h2) = 73 nodes  

•  d=24  IDS = too many nodes 
 A*(h1) = 39,135 nodes  
 A*(h2) = 1,641 nodes  



36 

Relaxed Problems 

•  A problem with fewer restrictions on the actions 
is called a relaxed problem 

•  The cost of an optimal solution to a relaxed 
problem is an admissible heuristic for the original 
problem 

•  If the rules of the 8-puzzle are relaxed so that a 
tile can move anywhere, then h1(n) gives the 
shortest solution 

•  If the rules are relaxed so that a tile can move to 
any adjacent square, then h2(n) gives the shortest 
solution 



37 

Subproblems 

1 2 

3 4 

1 

2 

3 

4 



38 

Relative benefit of heuristic functions 



39 

Heuristic search terminology 

•  State space: set of states that are all reachable from 
the initial state 

•  Evaluation function: provides a value for each node in 
the search tree.  

•  Greedy best-first search: selects the successor which 
has the highest value of the evaluation function 

•  Heuristic function: estimates the cost of the lowest-
cost path from a state at a node to the goal state 

•  Admissible: holds for a heuristic if it never 
overestimates the distance to the goal state. 

•  Consistent: If this condition holds, then the values of 
the evaluation function along any path are non-
decreasing. 



40 

A* Intuition 

When A* terminates its search, it has found a 
path whose actual cost is lower than the 
estimated cost of any path through any frontier 
node. But since those estimates are optimistic, A* 
can safely ignore those nodes. In other words, A* 
will never overlook the possibility of a lower-cost 
path and so is optimal. 



41 

Next Class 

•  Local Search 
•  4.1 – 4.2 
•  Problem set 1 due Sept. 29 


