Review II

CMPSCI 383 December 8, 2011

General Information about the Final

- Closed book closed notes
- Includes midterm material too
- But expect more emphasis on later material

What you should know

Chapter 16: Utility Theory

- Maximum expected utility (MEU) principle
- Utility and preferences: rational preferences
- Utility of money
 - Risk averse
 - Risk seeking
- What do humans do?
- Multiattribute utility functions
 - Pure dominance
 - Preference structure
- Decision networks

MEU

$$EU(a | e) = \sum_{s'} P(\text{Result}(a) = s' | a, e)U(s')$$

action = $\underset{a}{\operatorname{arg\,max}} EU(a | e)$

Constraints

Idea: preferences of a rational agent must obey constraints. Rational preferences ⇒ behavior describable as maximization of expected utility Constraints:

 $\begin{array}{l} \underbrace{Orderability}{(A \succ B) \lor (B \succ A) \lor (A \sim B)} \\ \hline \underline{Transitivity}\\ (A \succ B) \land (B \succ C) \Rightarrow (A \succ C) \\ \hline \underline{Continuity}\\ A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1 - p, C] \sim B \\ \hline \underline{Substitutability}\\ A \sim B \Rightarrow \ [p, A; \ 1 - p, C] \sim [p, B; 1 - p, C] \\ \hline \underline{Monotonicity}\\ A \succ B \Rightarrow \ (p \ge q \ \Leftrightarrow \ [p, A; \ 1 - p, B] \rightleftharpoons [q, A; \ 1 - q, B]) \end{array}$

You don't have to memorize these, but understand them.

Relationship between preferences and utilities

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given preferences satisfying the constraints there exists a real-valued function U such that $U(A) \ge U(B) \iff A \gtrsim B$ $U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)$

Money and Risk

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)), i.e., people are risk-averse

Prefer a sure thing with a payoff less than the EMV

Typical empirical data, extrapolated with risk-prone behavior:

Humans?

- Normative theory
- Descriptive theory
- Give an example of "irrational" human behavior.
 - Certainty effect
 - Ambiguity effect
 - Framing effect
 - Anchoring effect
- Tversky and Kahneman

Multiattribute Utility

Typically define attributes such that U is monotonic in each

Strict dominance: choice B strictly dominates choice A iff $\forall i \ X_i(B) \ge X_i(A)$ (and hence $U(B) \ge U(A)$)

Additive value functions

• What is?

$$V(S) = \sum_{i} V_i(X_i(S))$$

- Why?
 - Often a good way to describe preferences when multiple attributes are involved

What you **don't** need to know for the exam

- The 6 constraints for preference relation (but be able to understand one if given)
- Micromort, QALY
- Certainty equivalent, insurance premium
- Optimizer's curse
- Stochastic dominance
- Mutual preference independence
- Preferences with uncertainty (sec. heading on p. 625)
- Secs. 16.5-16.7

Chapter 17: Making Complex Decisions

- Sequential decision problems: MDPs
- Policy
- Optimal policy
- Utilities over time
 - Additive
 - Discounted
- Utilities of states
 - Policy Evaluation
- Bellman equation
- Value Iteration
- Policy Iteration
 - Modified policy iteration
 - Asynchronous policy iteration

A Simple Example

- "Gridworld" with 2 Goal states
- Actions: Up, Down, Left, Right
- Fully observable: Agent knows where it is

$$P(s' \mid s, a)$$

Markov Assumption

$$P(s' \mid s, a)$$

Agent's Utility Function

- Performance depends on the entire sequence of states and actions.
 - "Environment history"
- In each state, the agent receives a reward R(s).
 - The reward is real-valued. It may be positive or negative.
- Utility of environment history = sum of reward received.

Reward function

$$\frac{P(s' \mid s, a)}{R(s)}$$

	1	2	3	4
1	START	04	04	04
2	04		04	_1
3	04	04	04	+1

18

Decision Rules

- Decision rules say what to do in each state.
- Often called policies, π .
- Action for state s is given by $\pi(s)$.

Our Goal

- Find the policy that maximizes the expected sum of rewards.
- Called an *optimal policy*.

Markov Decision Process (MDP)

- M=(S,A,P,R)
- S = set of possible states
- A = set of possible actions
- P(s'ls,a) gives transition probabilities
- R = reward function
- Goal: find an optimal policy, π^* .

- Finite horizon: the "game" ends after *N* steps.
- Infinite horizon: the "game" never ends
- "With a finite horizon, the optimal action in a given state could change over time."
 - The optimal policy is *nonstationary*.
- With infinite horizon, the optimal policy is *stationary*.

Utilities over time

• Additive rewards:

$$U_h([s_0, s_1, s_2, \dots]) = R(s_0) + R(s_1) + R(s_2) + \dots$$

• Discounted rewards:

$$U_h([s_0, s_1, s_2, ...]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ...$$

• Discount factor:

 $\gamma \in [0,1]$

Utility of States

• Given a policy, we can define the utility of a state:

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t})\right]$$

- Finding the utility of states for a given policy.
- Solve a system of linear equations:

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s' | s, \pi(s)) U^{\pi}(s')$$

• An instance of a "Bellman Equation".

- The *n* linear equations can be solved in O(n³) with standard linear algebra methods.
- If O(n³) is still too much, we can do it iteratively:

$$U_{i+1}^{\pi} \leftarrow R(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) U_i^{\pi}(s')$$

• An instance of value iteration---for a fixed policy

Optimal Policy

$$\pi_s^* = \arg\max_{\pi} U^{\pi}(s)$$

- Optimal policy doesn't depend on what state you start in (for infinite horizon discounted case).
- Optimal policy: π^*
- True utility of a state:

$$U^{\pi^*}(s) = U(s)$$

"optimal value function"

• Given the true *U*(*s*) values, how can we select actions? (Maximum expected utility – MEU)

$$a_t = \arg \max_{a \in A(s)} \sum_{s'} P(s' \mid s_t, a) U(s')$$

- Utility = long term total reward from s onwards
- Reward = short term reward from s

Utility

3	0.812	0.868	0.918	+1
2	0.762		0.660	_1
1	0.705	0.655	0.611	0.388
	1	2	3	4

Searching for Optimal Policies

Bellman Equation

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' | s, a) U(s')$$

- If we write out the Bellman equation for all *n* states, we get *n* equations, with *n* unknowns: *U*(*s*).
- We can solve this system of equations to determine the Utility of every state.

• The equations are non-linear, so we can't use standard linear algebra methods.

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U(s')$$

 Value iteration: start with random initial values for each U(s), iteratively update each value to fit the fight-hand side of the equation:

$$U_{i+1} \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' | s, a) U_i(s')$$

- The update is applied simultaneously to every state.
- If this update is applied infinitely often, we are guaranteed to find the true *U*(*s*) values.
 - There is one unique solution
- Given the true *U*(*s*) values, how can we select actions? (Maximum expected utility MEU)

$$a_t = \arg \max_{a \in A(s)} \sum_{s'} P(s' | s_t, a) U_i(s')$$

Policy Iteration

- Policy iteration interleaves two steps:
 - Policy evaluation: Given a policy, compute the utility of each state for that policy
 - Modified policy iteration: don't do this to completion
 - Policy improvement: Calculate a new MEU policy
- Terminate when the policy doesn't change the utilities.
- Guaranteed to converge to an optimal policy

Asynchronous Policy Iteration

- We said the utility of every state is updated simultaneously. This isn't necessary.
- You can pick and subset of the states and apply either policy improvement or value iteration to that subset.
- Given certain conditions, this is also guaranteed to converge to an optimal policy.

What you **don't** have to know for the exam

- Average reward case
- Convergence details for VI: contractions (Sec. 17.2.3)
- Secs. 17.4 -17.6: POMDPs, Games, Mechanism design
Chapter 18: Learning from Examples

- Types of learning
- Supervised learning
 - Decision tree induction
- Univariate Linear Regression
 - Batch gradient descent
 - Stochastic gradient descent
- Multivariate Linear Regression
 - Regularization
- Linear Classifiers
 - Perceptron learning rule
- Logistic Regression

Types of learning

- Unsupervised learning
- Reinforcement learning
- Supervised learning
- Semi-supervised learning

Simplest form: learn a function from examples (tabula rasa)

f is the target function

An example is a pair
$$x$$
, $f(x)$, e.g., $\begin{array}{c|c} O & O & X \\ \hline X & \\ \hline X & \\ \end{array}$, $\begin{array}{c} +1 \\ \hline X & \\ \end{array}$

Problem: find a(n) hypothesis hsuch that $h \approx f$ given a training set of examples

(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes a deterministic, observable "environment"
- Assumes examples are given
- Assumes that the agent wants to learn f—why?)

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

Terms to know for supervised learning

- Training set
- Test set
- Generalization
- Classification
- Regression
- Hypothesis space
- Consistent hypothesis
- Ockham's razor
- Overfitting

- Cross-validation
- Regularization
- Model selection
- Loss function
- Generalization loss
- Empirical loss

Important issues

- Generalization
- Overfitting
- Cross-validation
 - Holdout cross validation
 - K-fold cross validation
 - Leave-one-out cross-validation
- Model selection

$$(x_1, y_1), (x_2, y_2), \dots (x_N, y_N)$$
 training set

Where each y_j was generated by an unknown function $y = f(\mathbf{x})$

Decision trees

Expressiveness?

- Consider only Boolean case
- How many Boolean functions are there of n Boolean attributes?
- Functions that can't be compactly represented by a decision tree?

Splitting the examples

Figure 18.4 FILES: figures/restaurant-stub.eps (Tue Nov 3 16:23:28 2009). Splitting the examples by testing on attributes. At each node we show the positive (light boxes) and negative (dark boxes) examples remaining. (a) Splitting on *Type* brings us no nearer to distinguishing between positive and negative examples. (b) Splitting on *Patrons* does a good job of separating positive and negative examples. After splitting on *Patrons*, *Hungry* is a fairly good second test.

Final decision tree from the examples

Figure 18.6 FILES: figures/induced-restaurant-tree.eps (Tue Nov 3 16:23:04 2009). The decision tree induced from the 12-example training set.

Choosing Attribute Tests

- Entropy
 - What does it measure?
- Information gain
 - What does it measure?

Loss Functions

Suppose the true prediction for input \mathbf{x} is $f(\mathbf{x}) = y$ but the hypothesis gives $h(\mathbf{x}) = \hat{y}$

 $L(\mathbf{x}, y, \hat{y}) = Utility(\text{result of using } y \text{ given input } \mathbf{x})$ $-Utility(\text{result of using } \hat{y} \text{ given input } \mathbf{x})$

Simplified version : $L(y, \hat{y})$

Absolute value loss: $L_1(y, \hat{y}) = |y - \hat{y}|$ Squared error loss: $L_2(y, \hat{y}) = (y - \hat{y})^2$ 0/1 loss: $L_{0/1}(y, \hat{y}) = 0$ if $y = \hat{y}$, else 1

<u>Generalization loss</u>: expected loss over all possible examples <u>Empirical loss</u>: average loss over available examples

Univariate Linear Regression

Univariate Linear Regression contd.

$$\mathbf{w} = \begin{bmatrix} w_0, w_1 \end{bmatrix} \qquad \text{weight vector} \\ h_{\mathbf{w}}(x) = w_1 x + w_0$$

Find weight vector that minimizes empirical loss, e.g., L₂:

$$Loss(h_{\mathbf{w}}) = \sum_{j=1}^{N} L_2(y_j, h_{\mathbf{w}}(x_j)) = \sum_{j=1}^{N} (y_j - h_{\mathbf{w}}(x_j))^2 = \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

i.e., find w^* such that

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} Loss(h_{\mathbf{w}})$$

Weight Space

 w_1

Finding w*

Find weights such that:

$$\frac{\partial}{\partial w_0} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0 \text{ and } \frac{\partial}{\partial w_1} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0$$

Gradient Descent

58

Gradient Descent contd.

For one training example (x,y):

 $w_0 \leftarrow w_0 + \alpha(y - h_w(x))$ and $w_1 \leftarrow w_1 + \alpha(y - h_w(x))x$

For *N* training examples:

$$w_0 \leftarrow w_0 + \alpha \sum_j (y_j - h_w(x_j))$$
 and $w_1 \leftarrow w_1 + \alpha \sum_j (y_j - h_w(x_j)) x_j$

batch gradient descent

stochastic gradient descent: take a step for one training example at a time

The Multivariate case

$$h_{sw}(\mathbf{x}_{j}) = w_{0} + w_{1}x_{j,1} + \dots + w_{n}x_{j,n} = w_{0} + \sum_{i} w_{i}x_{j,i}$$

Augmented vectors: add a feature to each **x** by tacking on a 1: $x_{j,0} = 1$ Then:

$$h_{sw}(\mathbf{x}_j) = \mathbf{w} \cdot \mathbf{x}_j = \mathbf{w}^T \mathbf{x}_j = \sum_i w_i x_{j,i}$$

And batch gradient descent update becomes:

$$w_i \leftarrow w_i + \alpha \sum_j (y_j - h_{\mathbf{w}}(\mathbf{x}_j)) x_{j,i}$$

Done after each example: Widrow-Hoff rule

The Multivariate case contd.

Or, solving analytically:

Let y be the vector of outputs for the training examples

X data matrix: each row is an input vector

Solving this for w^* : y = Xw

$$\mathbf{w}^* = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

pseudo inverse

Regularization

The process of explicitly penalizing hypothesis complexity

 $Cost(h) = EmpLoss(h) + \lambda Complexity(h)$

For example: Complexity(
$$h_{\mathbf{w}}$$
) = $L_q(\mathbf{w}) = \sum_i |w_i|^q$

Linear Classification: hard thresholds

Figure 18.15 FILES: (a) Plot of two seismic data parameters, body wave magnitude x_1 and surface wave magnitude x_2 , for earthquakes (white circles) and nuclear explosions (black circles) occurring between 1982 and 1990 in Asia and the Middle East (?). Also shown is a decision boundary between the classes. (b) The same domain with more data points. The earthquakes and explosions are no longer linearly separable.

Linear Classification: hard thresholds contd.

- Decision Boundary:
 - In linear case: linear separator, a hyperplane
- Linearly separable:
 - data is <u>linearly separable</u> if the classes can be separated by a linear separator
- Classification hypothesis:

 $h_{\mathbf{w}}(x) = Threshold(\mathbf{w} \cdot \mathbf{x})$ where Threshold(z) = 1 if $z \ge 0$ and 0 otherwise

Perceptron Learning Rule

For a single sample (\mathbf{x}, y) : $w_i \leftarrow w_i + \alpha (y - h_{\mathbf{w}}(\mathbf{x})) x_i$

- If the output is correct, i.e., $y = h_w(x)$, then the weights don't change
- If y = 1 but $h_w(\mathbf{x}) = 0$, then w_i is *increased* when x_i is positive and *decreased* when x_i is negative.
- If y = 0 but $h_w(\mathbf{x}) = 1$, then w_i is *decreased* when x_i is positive and *increased* when x_i is negative.

<u>Perceptron Convergence Theorem</u>: For any data set that's linearly separable and any training procedure that continues to present each training example, the learning rule is guaranteed to find a solution in a finite number of steps.

Linear Classification with Logistic Regression

Figure 18.17 FILES: (a) The hard threshold function Threshold(z) with 0/1 output. Note that the function is nondifferentiable at z = 0. (b) The logistic function, $Logistic(z) = \frac{1}{1+e^{-z}}$, also known as the sigmoid function. (c) Plot of a logistic regression hypothesis $h_{\mathbf{w}}(\mathbf{x}) = Logistic(\mathbf{w} \cdot \mathbf{x})$ for the data shown in Figure 18.14(b).

An important function!

Logistic Regression

$$h_{\mathbf{w}}(\mathbf{x}) = Logistic(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

For a single sample (\mathbf{x}, y) and L_2 loss function :

$$w_{i} \leftarrow w_{i} + \alpha \Big(y - h_{w}(\mathbf{x}) \Big) h_{w}(\mathbf{x}) \Big(1 - h_{w}(\mathbf{x}) \Big) x_{i}$$
derivative of logistic function

What you **don't** have to know for the exam

- Information gain formula
- Broadening applicability of decision trees
- Wrapper
- Small and large-scale learning
- Minimum description length (MDL)
- Learning theory: Sec. 18.5
- Formula for analytic solution of regression problem
- L1 vs. L2 regularization
- Logistic regression learning rule

 Networks of relatively simple processing units, which are very abstract models of neurons; the network does the computation more than the units.

Neuron-like units

Figure 18.19 FILES: figures/neuron-unit.eps (Wed Nov 4 11:23:13 2009). A simple mathematical model for a neuron. The unit's output activation is $a_j = g(\sum_{i=0}^{n} w_{i,j}a_i)$, where a_i is the output activation of unit *i* and $w_{i,j}$ is the weight on the link from unit *i* to this unit.

Typical activation functions

Figure 19.5 Three different activation functions for units.

$$\operatorname{step}_{t}(x) = \begin{cases} 1, & \text{if } x \ge t \\ 0, & \text{if } x < t \end{cases} \quad \operatorname{sign}(x) = \begin{cases} +1, & \text{if } x \ge 0 \\ -1, & \text{if } x < 0 \end{cases} \quad \operatorname{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

McCulloch and Pitts, 1943: showed that whatever you can do with logic networks, you can do with networks of abstract neuron-like units.

Units with step function activation functions

- Feed-forward vs. recurrent networks
- Multi-layer feed-forward networks

Input nodes Hidden nodes

Perceptrons

• Name given in 1950s to layered feed-forward networks.

What can perceptrons represent

• Only linearly separable functions

Back-propagation learning

To update weights from hidden units to output unit

$$Err_{k} = k^{th} \text{ component of } \mathbf{y} - \mathbf{h}_{\mathbf{w}}$$
$$w_{j,k} \leftarrow w_{j,k} + \alpha \times a_{j} \times Err_{k} \times g'(in_{k})$$

letting $\Delta_k = Err_k g'(in_k)$ this becomes $w_{j,k} \leftarrow w_{j,k} + \alpha \times a_j \times \Delta_k$

To update weights from input units to hidden units

$$\Delta_{j} = g'(in_{j}) \sum_{k} w_{j,k} \Delta_{k}$$
$$w_{i,j} \leftarrow w_{i,j} + \alpha \times a_{i} \times \Delta_{j}$$
$$(i) \xrightarrow{w_{i,j}} (j) \xrightarrow{w_{j,k}} k$$
input unit hidden unit output unit

Back-prop as gradient descent

Comments on network learning

- **Expressiveness**: given enough hidden units, can represent any function (almost).
- **Computational efficiency**: generally slow to train, but fast to use once trained.
- **Generalization**: good success in a number of real-world problems.
- Sensitivity to noise: very tolerant to noise in data

- **Transparency**: not good!
- **Prior knowledge**: not particularly easy to insert prior knowledge, although possible.

Nonparametric Methods

- Parametric model: a learning model that has a set of parameters of fixed size
 - e.g., linear models, neural networks (of fixed size)
- Nonparametric model: a learning model whose set of parameters is not bounded
 - Parameter set grows with the number of training examples
 - e.g., just save the examples in a lookup table

Nearest Neighbor Models

- K-nearest neighbors algorithm:
 - Save all the training examples
 - For classification: find k nearest neighbors of the input and take a vote (make k odd)
 - For regression: take mean or median of the k nearest neighbors, or do a local regression on them
- How do you measure distance?
- How do you efficiently find the k nearest neighbors?

Distance Measures

Minkowski distance

$$L^{p}(\mathbf{x}_{j}, \mathbf{x}_{q}) = \left(\sum_{i} \left| x_{j,i} - x_{q,i} \right|^{p} \right)^{1/p}$$

p = 1 Manhattan distance

$$p = 2$$
 Euclidean distance

Hamming distance for Boolean attribute values

k-nearest neighbor for k=1 and k=5

Figure 18.26 FILES: figures/earthquake-nn1.eps (Tue Nov 3 16:22:38 2009) figures/earthquake-nn5.eps (Tue Nov 3 16:22:38 2009). (a) A k-nearest-neighbor model showing the extent of the explosion class for the data in Figure 18.14, with k = 1. Overfitting is apparent. (b) With k = 5, the overfitting problem goes away for this data set.

Curse of Dimensionality

In high dimensions, the nearest points tend to be far away.

Figure 18.27 FILES: The curse of dimensionality: (a) The length of the average neighborhood for 10-nearest-neighbors in a unit hypercube with 1,000,000 points, as a function of the number of dimensions. (b) The proportion of points that fall within a thin shell consisting of the outer 1% of the hypercube, as a function of the number of dimensions. Sampled from 10,000 randomly distributed points.

Nonparametric Regression

What you **don't** have to know for the exam

- Details of backpropagation learning method (but know the general idea...)
- Optimal brain damage
- Locality-sensitive hashing
- Locally weighted regression
- Secs. 18.9—18.11

Chapter 20: Learning Probabilistic Models

- Full Bayesian Learning
- MAP approximation
- ML approximation
- ML parameter learning in Bayes nets
 - Naïve Bayes Model
- Bayesian parameter learning
 - Beta family of distributions
 - Conjugate families
- Latent variables

Full Bayesian Learning

View learning as Bayesian updating of a probability distribution over the hypothesis space

H is the hypothesis variable, values h_1, h_2, \ldots , prior $\mathbf{P}(H)$

*j*th observation d_j gives the outcome of random variable D_j training data $\mathbf{d} = d_1, \ldots, d_N$

Given the data so far, each hypothesis has a posterior probability:

 $P(h_i|\mathbf{d}) = \alpha P(\mathbf{d}|h_i) P(h_i)$

where $P(\mathbf{d}|h_i)$ is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

 $\mathbf{P}(X|\mathbf{d}) = \sum_{i} \mathbf{P}(X|\mathbf{d}, h_{i}) P(h_{i}|\mathbf{d}) = \sum_{i} \mathbf{P}(X|h_{i}) P(h_{i}|\mathbf{d})$

No need to pick one best-guess hypothesis!

MAP approximation

Summing over the hypothesis space is often intractable (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose h_{MAP} maximizing $P(h_i | \mathbf{d})$

I.e., maximize $P(\mathbf{d}|h_i)P(h_i)$ or $\log P(\mathbf{d}|h_i) + \log P(h_i)$

For deterministic hypotheses, $P(\mathbf{d}|h_i)$ is 1 if consistent, 0 otherwise \Rightarrow MAP = simplest consistent hypothesis (cf. science) For large data sets, prior becomes irrelevant

Maximum likelihood (ML) learning: choose h_{ML} maximizing $P(\mathbf{d}|h_i)$

I.e., simply get the best fit to the data; identical to MAP for uniform prior (which is reasonable if all hypotheses are of the same complexity)

ML is the "standard" (non-Bayesian) statistical learning method

ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction θ of cherry candies? Any θ is possible: continuum of hypotheses h_{θ} θ is a parameter for this simple (binomial) family of models

Suppose we unwrap N candies, c cherries and $\ell = N - c$ limes These are i.i.d. (independent, identically distributed) observations, so

$$P(\mathbf{d}|h_{\theta}) = \prod_{j=1}^{N} P(d_j|h_{\theta}) = \theta^c \cdot (1-\theta)^{\ell}$$

Maximize this w.r.t. θ —which is easier for the log-likelihood:

$$L(\mathbf{d}|h_{\theta}) = \log P(\mathbf{d}|h_{\theta}) = \sum_{j=1}^{N} \log P(d_j|h_{\theta}) = c \log \theta + \ell \log(1-\theta)$$
$$\frac{dL(\mathbf{d}|h_{\theta})}{d\theta} = \frac{c}{\theta} - \frac{\ell}{1-\theta} = 0 \qquad \Rightarrow \qquad \theta = \frac{c}{c+\ell} = \frac{c}{N}$$

Seems sensible, but causes problems with 0 counts!

Naïve Bayes Model

$$\mathbf{P}(\mathbf{C} \mid \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) = \alpha \ \mathbf{P}(\mathbf{C}) \prod_i \mathbf{P}(\mathbf{x}_i \mid \mathbf{C})$$

Naïve Bayes Classifier:

$$\mathbf{C}_{\text{NB}} = \operatorname{argmax}_{C \in \text{lables}} \mathbf{P}(C \mid x_1, x_2, \dots, x_n) = \operatorname{argmax} \alpha \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

Naïve Bayes contd.

$$\mathbf{C}_{\text{NB}} = \operatorname{argmax}_{C \in \text{lables}} \mathbf{P}(C \mid x_1, x_2, \dots, x_n) = \operatorname{argmax} \alpha \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

Or, taking logs and dropping α :

$$C_{\text{NB}} = \operatorname{argmax}_{C \in \text{lables}} \log \mathbf{P}(C \mid x_1, x_2, \dots, x_n) = \log \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$
$$= \log P(c) + \sum_i \log \mathbf{P}(x_i \mid C)$$

\rightarrow a linear classifier

Full Bayesian parameter learning

- ML learning is simple but has some problems:
 - e.g., after seeing one sample, the ML estimate is %100 that sample
- Bayesian approach starts with a hypothesis prior, which is revised using Bayes rule as more data comes in.
- E.g., consider one unknown parameter θ

We start with a prob. distribution over values of θ : e.g., the prior probability that a bag has a fraction θ of cherries.

Beta family of distributions

$$beta[a,b](\theta) = \alpha \theta^{a-1} (1-\theta)^{b-1} \quad a \text{ and } b \text{ are called hyperparameters}$$

Figure 20.5 FILES: Examples of the beta[a, b] distribution for different values of [a, b].

Conjugate families of distributions

• E.g., the Beta family

Closed under Bayesian updates

$$P(\theta \mid D_{1} = cherry) = \alpha P(D_{1} = cherry \mid \theta) P(\theta)$$
$$= \alpha' \theta \cdot beta[a,b](\theta) = \alpha' \theta \cdot \theta^{a-1} (1-\theta)^{b-1}$$
$$= \alpha' \theta^{a} (1-\theta)^{b-1} = beta[a+1,b](\theta)$$

Latent variables

Figure 20.10 FILES: figures/313-heart-disease.eps (Tue Nov 3 16:22:09 2009). (a) A simple diagnostic network for heart disease, which is assumed to be a hidden variable. Each variable has three possible values and is labeled with the number of independent parameters in its conditional distribution; the total number is 78. (b) The equivalent network with *HeartDisease* removed. Note that the symptom variables are no longer conditionally independent given their parents. This network requires 708 parameters.

What you **don't** have to know for the exam

- MDL method
- ML learning for continuous models (Sec. 20.2.3)
- Learning Bayes net structures (Sec. 20.2.5)
- Density estimation (Sec. 20.2.6)
- Learning with hidden variables (Sec. 20.3): but know what a latent variable is and why useful

Chapter 21: Reinforcement Learning

Chapter 21: Reinforcement Learning

- Some kinds of RL agents
 - Utility-based agent: learns utility function on states and uses it to select actions
 - Needs an environment model to decide on actions
 - Q-learning agent: leans and action-utility functions, or Q-function, giving expected utility for taking each action in each state.
 - Does not need an environment model.
 - Reflex agent: learn a policy without first learning a state-utility function or a Q-function

Passive versus active learning

- A **passive learner** simply watches the world going by and tries to learn the utility of being in various states.
- An **active learner** must also act using the learned information, and can use its problem generator to suggest explorations of unknown portions of the environment.

Passive learning

Given (but agent doesn't know this):

- A Markov model of the environment.
- States, with probabilistic actions.
- Terminal states have rewards/utilities.

Problem:

• Learn expected utility of each state.

Note: if agent knows how the environment and its actions work, can solve the relevant Bellman equation (which would be linear).

Learning utility functions

- A training sequence (or episode) is an instance of world transitions from an initial state to a terminal state.
- The **additive utility assumption**: utility of a sequence is the sum of the rewards over the states of the sequence.
- Under this assumption, the utility of a state is the expected **reward-to-go** of that state.

- For each training sequence, compute the reward-to-go for each state in the sequence and update the utilities.
- This is just learning the utility function from examples.
- Generates utility estimates that minimize the mean square error (LMS-update).

Direct Utility Estimation

 $U(i) \leftarrow (1 - \alpha)U(i) + \alpha REWARD$ (training sequence)

Problems with direct utility estimation

Converges slowly because it ignores the relationship between neighboring states:

Key Observation: Temporal Consistency

- Utilities of states are not independent
- The utility of each state equals its own reward plus the expected utility of its successor states:

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) U^{\pi}(s')$$

The key fact:

$$U_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} \cdots$$

$$= r_{t+1} + \gamma \left(r_{t+2} + \gamma r_{t+3} + \gamma^{2} r_{t+4} \cdots \right)$$

$$= r_{t+1} + \gamma U_{t+1}$$
Adaptive dynamic programming

- Learn a model: transition probabilities, reward function
- Do policy evaluation
 - Solve the Bellman equation either directly or iteratively (value iteration without the max)
- Learn model while doing iterative policy evaluation:
 - Update the model of the environment after each step. Since the model changes only slightly after each step, policy evaluation will converge quickly.

Temporal difference (TD) learning

- Approximate the constraint equations without solving them for all states.
- Modify U(i) whenever we see a transition from i to *j* using the following rule:

$$U(i) \leftarrow U(i) + \alpha \big[R(i) + U(j) - U(i) \big]$$

- The modification moves U(i) closer to satisfying the original equation.
- Q. Why does it work?

TD learning contd.

 $U(i) \leftarrow (1 - \alpha)U(i) + \alpha \left[R(i) + U(j) \right]$

Passive RL: review

- Agent has fixed policy and learns utilities
 - Barto: "not really RL: it is prediction"
- Direct utility estimation
 - Collect samples of quantity to be estimated
 - Average them
 - Or use an incremental method....
 - Does not take advantage of relationship between utilities of different states
- Adaptive Dynamic Programming (ADP)
 - Learn a model
 - Do DP on it
 - Can interleave these (modified policy iteration)
- Temporal Difference (TD) Learning
 - Use an error to make estimates adhere to constraint
 - Does not need a model

A Bit of Terminology

- Utilities (U) = Values (V)
- <u>Return</u>: discounted sum of rewards
 - <u>Return from a state</u>: the discounted sum of rewards accumulated after visiting that state
 - Same as "reward-to-go"
 - Utility (or value) of a state is the <u>expected</u> return from that state

More on TD Learning

- TD methods do not require a model of the environment, only experience
- You can learn before knowing the final outcome
 - Less memory
 - Less peak computation
 - You can learn without the final outcome from incomplete sequences

You are the Predictor

Suppose you observe the following 8 episodes:

You are the Predictor

You are the Predictor

- The prediction that best matches the training data is V(A)=0
 - This minimizes the mean-square-error on the training set
 - This is what direct utility estimation gets
- If we consider the sequentiality of the problem, then we would set V(A)=.75
 - This is correct for the maximum likelihood estimate of a Markov model generating the data
 - i.e, if we do a best fit Markov model, and assume it is exactly correct, and then compute what it predicts (how?)
 - This is called the certainty-equivalence estimate
 - This is what TD gets

TD learning of Action-Values (for a given policy)

$$Q^{\pi}(s,a) = \begin{array}{l} \text{Utility of doing action } a \text{ in state } s \\ \text{i.e.: Total amount of reward expected} \\ \text{over the future if you do action } a \text{ in} \\ \text{state } s \text{ and thereafter follow policy } \pi \end{array}$$

The utility of a state is the utility of doing the best action from that state:

$$U^{\pi}(s) = \max_{a} Q^{\pi}(s,a)$$

TD Learning of Action-Values (for a given policy)

Estimate Q^{π} for the current behavior policy π .

After every transition from a nonterminal state s_t , do this : $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$ If s_{t+1} is terminal, then $Q(s_{t+1}, a_{t+1}) = 0$.

Active RL

- Passive agent follows a fixed policy, estimates expected utilities
- Active agent needs to decide on what actions to perform to maximize expected utility

Passive agent: faces a **prediction** problem Active agent: faces a **control** problem

- A greedy agent is one that always takes the action that maximizes its current utility estimates
- If its utility estimates are correct, i.e., it has learned the true utility function (or optimal value function), then a greedy agent acts optimally.

Exploration/Exploitation Dilemma

- Exploitation: act according to your current estimates (exploit current "knowledge").
- Exploration: do something else!
- You can't do both at the same time.
- How do you handle the tradeoff?

What's the best exploration policy?

Assume you've learned a utility function, How do you select actions?

Greedy Action Selection:

Always select the action that loss best:

$$\pi(s) = \arg\max_{a} Q(s,a)$$

E-Greedy Action Selection:

Be greedy most of the time Occasionally take a random action

Other Methods:

Boltzmann distribution, keep track of confidence intervals, etc.

The simplest possible thing!

Current estimate

ε-Greedy Action Selection

• Greedy action selection:

$$a_t = a_t^* = \arg\max_a Q_t(a)$$

• ε-Greedy:

$$a_{t} = \begin{cases} a_{t}^{*} \text{ with probability } 1 - \varepsilon \\ \text{random action with probability } \varepsilon \end{cases}$$

... the simplest way to try to balance exploration and exploitation

- GLIE schemes: "Greedy in the Limit of Infinite Exploration"
 - Simplest maybe: ϵ -Greedy with decreasing ϵ
 - Optimistic initial estimates, fading out with increasing visitations
- "Exploration Bonuses"

Sarsa

Turn passive learning of action values into an active method by always updating the policy to be greedy with respect to the current estimate:

```
Initialize Q(s, a) arbitrarily

Repeat (for each episode):

Initialize s

Choose a from s using policy derived from Q (e.g., \epsilon-greedy)

Repeat (for each step of episode):

Take action a, observe r, s'

Choose a' from s' using policy derived from Q (e.g., \epsilon-greedy)

Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma Q(s', a') - Q(s, a)]

s \leftarrow s'; a \leftarrow a';

until s is terminal
```

Q-Learning

One - step Q - learning :

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

Initialize
$$Q(s, a)$$
 arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from Q (e.g., ϵ -greedy)
Take action a, observe r, s'
 $Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$
 $s \leftarrow s';$
until s is terminal

Cliffwalking

On-Policy vs. Off-Policy

- Behavior policy: the policy the agent is using.
- Estimation policy: the policy the agent is evaluating
- On-Policy methods:
 - Estimation policy = Behavior policy
- Off-Policy methods:

Q-learning

SARSA

• Estimation policy ≠ Behavior policy

- So far only considered lookup table representations of utility functions.
- What if the state set is huge? e.g. Backgammon
- Use <u>function approximation</u> methods

Features or Basis Functions

• E.g., linear function approximation: represent U or Q as a linear combination of features (or basis functions f_1, \dots, f_n :

$$\hat{U}_{\theta}(s) = \theta_1 f_1(s) + \theta_2 f_2(s) + \dots + \theta_n f_n(s)$$

n << number of states

Gradient ascent TD learning

For state-value functions:

$$\theta_i \leftarrow \theta_i + \alpha \Big[R(s) + \gamma \, \hat{U}_{\theta}(s') - \hat{U}_{\theta}(s) \Big] \frac{\partial \hat{U}_{\theta}(s)}{\partial \theta_i}$$

For action-value functions:

$$\theta_{i} \leftarrow \theta_{i} + \alpha \left[R(s) + \gamma \max_{a'} \hat{Q}_{\theta}(s',a') - \hat{Q}_{\theta}(s,a) \right] \frac{\partial \hat{Q}_{\theta}(s,a)}{\partial \theta_{i}}$$

For Linear Function Approximation

$$\hat{U}_{\theta}(s) = \theta_1 f_1(s) + \theta_2 f_2(s) + \dots + \theta_n f_n(s)$$

$$\frac{\partial \hat{U}_{\theta}(s)}{\partial \theta_{i}} = ?$$

For Linear Function Approximation

$$\hat{U}_{\theta}(s) = \theta_1 f_1(s) + \theta_2 f_2(s) + \dots + \theta_n f_n(s)$$

$$\frac{\partial \hat{U}_{\theta}(s)}{\partial \theta_{i}} = f_{i}(s)$$

"Coarse Coding"

Tile Coding

- Binary feature for each tile
- Number of features present at any one time is constant
- Binary features means weighted sum easy to compute
- Easy to compute indices of the freatures present

Shape of tiles \Rightarrow Generalization

#Tilings \Rightarrow Resolution of final approximation

Radial Basis Functions (RBFs)

e.g., Gaussians

$$f_i(s) = \exp\left(-\frac{\left\|s - c_i\right\|^2}{2\sigma_i^2}\right)$$

Nonlinear Function Approx.

TD-Gammon Tesauro, 1992–1995

Action selection by 2–3 ply search

Start with a random network

Play very many games against self

Learn a value function using TD with backpropagation from this

simulated experience

This produces arguably the best player in the world

Eligibility traces: Sarsa(λ) Example

- With one trial, the agent has much more information about how to get to the goal
 - not necessarily the *best* way
- Can considerably accelerate learning

What you **don't** need to know for the exam

- Policy search (Sec. 21.5)
- Formulas for SARSA and Q-Learning update rules
- Exploration and bandits (the box on p. 841)
- Byesian RL
- Robust control theory

That's all (!)