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CMPSCI 383  
December 8, 2011!

Review II"
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General Information about the Final"

•  Closed book closed notes!
•  Includes midterm material too!
•  But expect more emphasis on later material!



What you should know!
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Chapter 16: Utility Theory"

•  Maximum expected utility (MEU) principle!
•  Utility and preferences: rational preferences!
•  Utility of money!

•  Risk averse!
•  Risk seeking!

•  What do humans do?!
•  Multiattribute utility functions!

•  Pure dominance!
•  Preference structure!

•  Decision networks!
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MEU"

€ 

EU(a | e) = P(Result(a) = ʹ′ s | a,e)U( ʹ′ s )
ʹ′ s 
∑

action = argmax
a

EU(a | e)
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Constraints"

You donʼt have to memorize these, but understand them.!
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Relationship between preferences and utilities"
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Money and Risk"

Prefer a sure thing with a payoff less than the EMV!

Prefer a gamble L over 
EMV(L)!
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Humans?"

•  Normative theory!
•  Descriptive theory!
•  Give an example of “irrational” human 

behavior.!
•  Certainty effect!
•  Ambiguity effect!
•  Framing effect!
•  Anchoring effect!

•  Tversky and Kahneman !
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Multiattribute Utility"
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Additive value functions"

•  What is?!

•  Why?!
•  Often a good way to describe preferences when 

multiple attributes are involved!
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What you donʼt need to know for the exam"

•  The 6 constraints for preference relation (but 
be able to understand one if given)!

•  Micromort, QALY!
•  Certainty equivalent, insurance premium!
•  Optimizerʼs curse!
•  Stochastic dominance!
•  Mutual preference independence!
•  Preferences with uncertainty (sec. heading on 

p. 625)!
•  Secs. 16.5-16.7!
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Chapter 17: Making Complex Decisions"

•  Sequential decision problems: MDPs!
•  Policy!
•  Optimal policy!
•  Utilities over time!

•  Additive!
•  Discounted!

•  Utilities of states!
•  Policy Evaluation!

•  Bellman equation!
•  Value Iteration!
•  Policy Iteration!

•  Modified policy iteration!
•  Asynchronous policy iteration!



14 

A Simple Example"

•  “Gridworld” with 2 Goal states!
•  Actions: Up, Down, Left, Right!
•  Fully observable: Agent knows where it is!

1231234START0.80.10.1(a)(b)–1+ 1
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Transition Model"

1231234START0.80.10.1(a)(b)–1+ 1
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Markov Assumption"

1231234START0.80.10.1(a)(b)–1+ 1
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Agentʼs Utility Function"

•  Performance depends on the entire sequence of 
states and actions.!
•  “Environment history”!

•  In each state, the agent receives a reward R(s).!
•  The reward is real-valued. It may be positive or 

negative.!
•  Utility of environment history = sum of reward 

received.!
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Reward function"

1231234START0.80.10.1(a)(b)–1+ 1

-‐.04	   -‐.04	  -‐.04	  

-‐.04	  

-‐.04	  

-‐.04	  

-‐.04	  -‐.04	  
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Decision Rules"

•  Decision rules say what to do in each state.!
•  Often called policies, π. 
•  Action for state s is given by π(s).!
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Our Goal"

•  Find the policy that maximizes the expected 
sum of rewards.!

•  Called an optimal policy.!
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Markov Decision Process (MDP)"

•  M=(S,A,P,R)!
•  S = set of possible states!
•  A = set of possible actions!
•  P(sʼ|s,a) gives transition probabilities!
•  R = reward function!

•  Goal: find an optimal policy, π*.!
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Finite/Infinite Horizon"

•  Finite horizon: the “game” ends after N steps.!
•  Infinite horizon: the “game” never ends!
•  “With a finite horizon, the optimal action in a 

given state could change over time.”!
•  The optimal policy is nonstationary.!

•  With infinite horizon, the optimal policy is 
stationary.!
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Utilities over time"

•  Additive rewards:!

•  Discounted rewards:!

•  Discount factor:!
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Utility of States"

•  Given a policy, we can define the utility of a 
state:!
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Policy Evaluation"

•  Finding the utility of states for a given policy.!

•  Solve a system of linear equations:!

•  An instance of a “Bellman Equation”.!€ 

π

€ 

π
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Policy Evaluation"

•  The n linear equations can be solved in O(n3) 
with standard linear algebra methods.!

•  If O(n3) is still too much, we can do it iteratively:!

•  An instance of value iteration---for a fixed policy!€ 

π

€ 

π
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Optimal Policy"

•  Optimal policy doesnʼt depend on what state 
you start in (for infinite horizon discounted case).!

•  Optimal policy: !
•  True utility of a state:!

€ 

π*

“optimal value function”!
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Selecting optimal actions"

•  Given the true U(s) values, how can we select 
actions? (Maximum expected utility – MEU)!
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Utility and Rewards"

•  Utility = long term total reward from s onwards!
•  Reward = short term reward from s!
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Utility"

123123–1+ 140.6110.8120.6550.7620.9180.7050.6600.868 0.388
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Searching for Optimal Policies"

•  Bellman Equation!

•  If we write out the Bellman equation for all n 
states, we get n equations, with n unknowns: U(s).!

•  We can solve this system of equations to 
determine the Utility of every state.!



32 

Value Iteration"

•  The equations are non-linear, so we canʼt use 
standard linear algebra methods.!

•  Value iteration: start with random initial values 
for each U(s), iteratively update each value to 
fit the fight-hand side of the equation:!
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Value Iteration"

•  The update is applied simultaneously to every 
state.!

•  If this update is applied infinitely often, we are 
guaranteed to find the true U(s) values.!
•  There is one unique solution!

•  Given the true U(s) values, how can we select 
actions? (Maximum expected utility – MEU)!
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Policy Iteration"

•  Policy iteration interleaves two steps:!
•  Policy evaluation: Given a policy, compute the 

utility of each state for that policy!
•  Modified policy iteration: donʼt do this to completion!

•  Policy improvement: Calculate a new MEU 
policy!

•  Terminate when the policy doesnʼt change 
the utilities.!

•  Guaranteed to converge to an optimal 
policy!
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Asynchronous Policy Iteration"

•  We said the utility of every state is updated 
simultaneously. This isnʼt necessary.!

•  You can pick and subset of the states and 
apply either policy improvement or value 
iteration to that subset.!

•  Given certain conditions, this is also 
guaranteed to converge to an optimal policy.!
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What you donʼt have to know for the exam"

•  Average reward case!
•  Convergence details for VI: contractions (Sec. 

17.2.3)!
•  Secs. 17.4 -17.6: POMDPs, Games, 

Mechanism design!
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Chapter 18: Learning from Examples"
•  Types of learning!
•  Supervised learning!

•  Decision tree induction!
•  Univariate Linear Regression!

•  Batch gradient descent!
•  Stochastic gradient descent!

•  Multivariate Linear Regression!
•  Regularization!

•  Linear Classifiers!
•  Perceptron learning rule!

•  Logistic Regression!
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Types of learning"

•  Unsupervised learning!
•  Reinforcement learning!
•  Supervised learning!
•  Semi-supervised learning!
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Supervised Learning"
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Supervised Learning"



41 

Supervised Learning"
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Supervised Learning"
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Supervised Learning"
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Supervised Learning"
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Terms to know for supervised learning"

•  Training set!
•  Test set!
•  Generalization!
•  Classification!
•  Regression!
•  Hypothesis space!
•  Consistent hypothesis!
•  Ockhamʼs razor!
•  Overfitting!

•  Cross-validation!
•  Regularization!
•  Model selection!
•  Loss function!
•  Generalization loss!
•  Empirical loss!
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Important issues"

•  Generalization !
•  Overfitting!
•  Cross-validation!

•  Holdout cross validation!
•  K-fold cross validation!
•  Leave-one-out cross-validation!

•  Model selection!
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Recall Notation"

  

€ 

(x1,y1), (x2,y2),K (xN ,yN ) training set!

Where each     was generated by !
an unknown function!

€ 

y j

€ 

y = f (x)

Discover a function     that best 
approximates the true function!

€ 

h

€ 

f

hypothesis!
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Decision trees"
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Expressiveness?"

•  Consider only Boolean case!
•  How many Boolean functions are there of n 

Boolean attributes?!
•  Functions that canʼt be compactly 

represented by a decision tree?!
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Splitting the examples"
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Final decision tree from the examples"
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Choosing Attribute Tests"

•  Entropy!
•  What does it measure?!

•  Information gain!
•  What does it measure?!
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Loss Functions"

€ 

L(x,y, ˆ y ) = Utility(result of using y given input x)
                   −Utility(result of using ˆ y  given input x)€ 

Suppose the true prediction for input x is f (x) = y
but the hypothesis gives h(x) = ˆ y 

€ 

Simplified version :  L(y, ˆ y )

€ 

Absolute value loss :  L1(y, ˆ y ) = y − ˆ y 

Squared error loss :    L2(y, ˆ y ) = y − ˆ y ( )2

0/1 loss :                     L0 /1(y, ˆ y ) = 0 if y = ˆ y ,  else 1

Generalization loss: expected loss over all possible examples!
Empirical loss: average loss over available examples!
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Univariate Linear Regression"
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Univariate Linear Regression contd."

€ 

w = w0,w1[ ]
hw (x) = w1x + w0

weight vector!

Find weight vector that minimizes empirical loss, 
e.g., L2:!

€ 

Loss(hw ) = L2(y j , hw (x j )) =
j=1

N

∑ (y j − hw (x j ))
2 =

j=1

N

∑ (y j − (w1x j + w0))
2

j=1

N

∑

€ 

w* = argminw Loss(hw )

i.e., find      such that!

€ 

w*
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Weight Space"
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Finding w*"

€ 

∂
∂w0

(y j − (w1x j + w0))2 = 0  and  
j=1

N

∑ ∂
∂w1

(y j − (w1x j + w0))2 = 0  
j=1

N

∑

Find weights such that:!
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Gradient Descent"

€ 

wi← wi −α
∂
∂wi

Loss(w)

step size or !
learning rate!
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Gradient Descent contd."

€ 

w0← w0 +α(y − hw (x))   and   w1← w1 +α(y − hw (x))x

For one training example         :!

€ 

(x,y)

€ 

w0← w0 +α (y j − hw (x j ))
j
∑    and   w1← w1 +α (y j − hw (x j ))

j
∑ x j

For N training examples:!

batch gradient descent!

stochastic gradient descent: take a step for 
one training example at a time!
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The Multivariate case"

  

€ 

hsw (x j ) = w0 + w1x j,1 +L+ wnx j ,n = w0 + wix j,i
i
∑

Augmented vectors: add a feature to each     by tacking on a 1:!

€ 

x j,0 =1

€ 

hsw (x j ) = w⋅ x j = wTx j = wix j,i
i
∑

Then:!

€ 

wi← wi +α (y j − hw (x j ))
j
∑ x j,i

And batch gradient descent update becomes:!

€ 

x

Done after each example: Widrow-Hoff rule!
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The Multivariate case contd."

Or, solving analytically:!

€ 

yLet      be the vector of outputs for the training examples!

€ 

X data matrix: each row is an input vector!

€ 

y = XwSolving this for      :!

€ 

w*

€ 

w* = XTX( )−1XTy

pseudo inverse!
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Regularization"

€ 

Cost(h) = EmpLoss(h) + λComplexity(h)

For example :  Complexity(hw ) = Lq (w) = wi
i
∑

q

The process of explicitly penalizing hypothesis complexity!
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Linear Classification: hard thresholds"



64 

Linear Classification: hard thresholds contd."

•  Decision Boundary:!
•  In linear case: linear separator, a hyperplane!

•  Linearly separable: !
•  data is linearly separable if the classes can be 

separated by a linear separator!
•  Classification hypothesis:!

€ 

hw (x) = Threshold(w⋅ x)  where  Threshold(z) =1 if z ≥ 0 and 0 otherwise
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Perceptron Learning Rule"

€ 

For a single sample (x,y) :

wi← wi +α y − hw (x)( )xi

€ 

• If the output is correct, i.e.,  y =hw (x),  then the weights don't change
• If y =1 but hw (x) = 0, then wi is increased when xi is positive and decreased when xi is negative.
• If y = 0 but hw (x) =1, then wi is decreased when xi is positive and increased when xi is negative.

Perceptron Convergence Theorem: For any data set 
thatʼs linearly separable and any training procedure 
that continues to present each training example, the 
learning rule is guaranteed to find a solution in a finite 
number of steps.!
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Linear Classification with Logistic Regression"

An important function!!
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Logistic Regression"

€ 

hw (x) = Logistic(w⋅ x) =
1

1+ e−w⋅x

€ 

€ 

For a single sample (x,y) and L2 loss function :

wi← wi +α y − hw (x)( )hw (x) 1− hw (x)( )xi

derivative of logistic function!
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What you donʼt have to know for the exam"

•  Information gain formula!
•  Broadening applicability of decision trees!
•  Wrapper!
•  Small and large-scale learning!
•  Minimum description length  (MDL)!
•  Learning theory: Sec. 18.5!
•  Formula for analytic solution of regression problem!
•  L1 vs. L2 regularization!
•  Logistic regression learning rule!
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Artificial Neural Networks"

•  Networks of relatively simple processing 
units, which are very abstract models of 
neurons; the network does the computation 
more than the units.!
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Neuron-like units"

j i 

€ 

wi, j
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Typical activation functions"
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NNs and logic"

Units with step function activation functions!

McCulloch and Pitts, 1943: showed that whatever!
you can do with logic networks, you can do with!
networks of abstract neuron-like units.!
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Network structures"

•  Feed-forward vs. recurrent networks!
•  Multi-layer feed-forward networks!

Input nodes! Hidden nodes!

Output node(s)!
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Perceptrons"

•  Name given in 1950s to layered feed-forward networks.!

O = Step0( Wj Ij)
j
∑  

  = Step0(W ⋅ I)
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What can perceptrons represent"

•  Only linearly separable functions!
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Back-propagation learning"

€ 

Errk = k th  component of y −hw
w j,k← w j ,k +α × a j × Errk × ʹ′ g (ink )

letting Δ k = Errk ʹ′ g (ink ) this becomes
w j,k← w j ,k +α × a j × Δ k

To update weights from hidden units to output unit!

k j 

€ 

w j,k

output unit!hidden unit!
i 

€ 

wi, j

input unit!
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Back-prop contd."

To update weights from input units to hidden units!

€ 

Δ j = ʹ′ g (in j ) w j ,kΔ k
k
∑

wi, j← wi, j +α × ai × Δ j

k j 

€ 

w j,k

output unit!hidden unit!
i 

€ 

wi, j

input unit!
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Back-prop as gradient descent"

€ 

Err = (yk − ak )
2

k
∑

sum squared error!

An error surface for net with!
linear activation functions!

If nonlinear, much more !
complicated: local minima!
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Comments on network learning"

•  Expressiveness: given enough hidden units, 
can represent any function (almost).!

•  Computational efficiency: generally slow to 
train, but fast to use once trained.!

•  Generalization: good success in a number of 
real-world problems.!

•  Sensitivity to noise: very tolerant to noise in 
data!
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Comments contd."

•  Transparency: not good!!
•  Prior knowledge: not particularly easy to 

insert prior knowledge, although possible.!



81 

Nonparametric Methods"

•  Parametric model: a learning model that has  
a set of parameters of fixed size!
•  e.g., linear models, neural networks (of fixed size)!

•  Nonparametric model: a learning model 
whose set of parameters is not bounded!
•  Parameter set grows with the number of training 

examples!
•  e.g., just save the examples in a lookup table!
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Nearest Neighbor Models"

•  K-nearest neighbors algorithm:!
•  Save all the training examples!
•  For classification: find k nearest neighbors of the 

input and take a vote (make k odd)!
•  For regression: take mean or median of the k 

nearest neighbors, or do a local regression on 
them!

•  How do you measure distance?!
•  How do you efficiently find the k nearest 

neighbors?!
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Distance Measures"

€ 

Minkowski distance

Lp (x j ,xq ) = x j,i − xq,i

p

i
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ p

€ 

p =1  Manhattan distance
p = 2  Euclidean distance

Hamming distance for Boolean attribute values
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k-nearest neighbor for k=1 and k=5"
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Curse of Dimensionality"

In high dimensions, the nearest points tend to be far away.!
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Nonparametric Regression"
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What you donʼt have to know for the exam"

•  Details of backpropagation learning method 
(but know the general idea…)!

•  Optimal brain damage!
•  Locality-sensitive hashing!
•  Locally weighted regression!
•  Secs. 18.9—18.11!
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Chapter 20: Learning Probabilistic Models"

•  Full Bayesian Learning!
•  MAP approximation !
•  ML approximation!
•  ML parameter learning in Bayes nets!

•  Naïve Bayes Model!
•  Bayesian parameter learning!

•  Beta family of distributions!
•  Conjugate families !

•  Latent variables!
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Full Bayesian Learning"
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MAP approximation"
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ML approximation"
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ML parameter learning in Bayes nets"
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Naïve Bayes Model"

C

€ 

X1

€ 

Xn

€ 

X2

class label!

Attributes: 
independent given C!

  

€ 

P(C | x1,x2,K,xn ) = α P(C) P(xi |C)
i
∏

  

€ 

CNB = argmaxC∈lablesP(C | x1,x2,K,xn ) = argmaxαP(C) P(xi |C)
i
∏

Naïve Bayes Classifier:!
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Naïve Bayes contd."

  

€ 

CNB = argmaxC∈lableslog P(C | x1,x2,K,xn ) = logP(C) P(xi |C)
i
∏

                                                                 = logP(c) + log
i
∑ P(xi |C)

Or, taking logs and dropping α :!

 a linear classifier!

  

€ 

CNB = argmaxC∈lablesP(C | x1,x2,K,xn ) = argmaxαP(C) P(xi |C)
i
∏



95 

Full Bayesian parameter learning"

•  ML learning is simple but has some problems:!
•  e.g., after seeing one sample, the ML estimate is 

%100 that sample!
•  Bayesian approach starts with a hypothesis 

prior, which is revised using Bayes rule as 
more data comes in.!

•  E.g., consider one unknown parameter !

€ 

θ

We start with a prob. distribution over values of     :!
e.g., the prior probability that a bag has a fraction     
of cherries.!

€ 

θ

€ 

θ
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Beta family of distributions"

€ 

beta a,b[ ](θ) = αθ a−1 1−θ( )b−1

€ 

a and b are called hyperparameters
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Conjugate families of distributions"

•  E.g., the Beta family!

Closed under Bayesian updates!

€ 

P(θ |D1 = cherry) = α P(D1 = cherry |θ )P(θ )

                             = ʹ′ α θ⋅ beta a,b[ ](θ) = ʹ′ α θ⋅ θ a−1 1−θ( )b−1

                             = ʹ′ α θ a 1−θ( )b−1
= beta a +1,b[ ](θ )



98 

Latent variables"
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What you donʼt have to know for the exam"

•  MDL method!
•  ML learning for continuous models (Sec. 

20.2.3)!
•  Learning Bayes net structures (Sec. 20.2.5)!
•  Density estimation (Sec. 20.2.6)!
•  Learning with hidden variables (Sec. 20.3): 

but know what a latent variable is and why 
useful!
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Chapter 21: Reinforcement Learning"



101 

Chapter 21: Reinforcement Learning"

•  Some kinds of RL agents!
•  Utility-based agent: learns utility function on states 

and uses it to select actions!
•  Needs an environment model to decide on actions!

•  Q-learning agent:  leans and action-utility 
functions, or Q-function, giving expected utility for 
taking each action in each state.!
•  Does not need an environment model.!

•  Reflex agent: learn a policy without first learning a 
state-utility function or a Q-function!
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Passive versus active learning "

•  A passive learner simply watches the world 
going by and tries to learn the utility of being 
in various states.!

•  An active learner must also act using the 
learned information, and can use its problem 
generator to suggest explorations of 
unknown portions of the environment.!
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Passive learning"

Given (but agent doesnʼt know this):"
•  A Markov model of the environment.!
•  States, with probabilistic actions.!
•  Terminal states have rewards/utilities.!

Problem:"
•  Learn expected utility of each state.!

Note: if agent knows how the environment and its 
actions work, can solve the relevant Bellman equation 
(which would be linear).!
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Learning utility functions"

•  A training sequence (or episode) is an 
instance of world transitions from an initial 
state to a terminal state.!

•  The additive utility assumption: utility of a 
sequence is the sum of the rewards over the 
states of the sequence.!

•  Under this assumption, the utility of a state is 
the expected reward-to-go of that state.!
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Direct Utility Estimation"

•  For each training sequence, compute the 
reward-to-go for each state in the  sequence 
and update the utilities.!

•  This is just learning the utility function from 
examples.!

•  Generates utility estimates that minimize the 
mean square error (LMS-update).!
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Direct Utility Estimation"

U(i)← (1− α )U(i) + α REWARD(training sequence)

state i!
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Problems with direct utility estimation"

Converges slowly because it ignores the 
relationship between neighboring states:!

New 
U=? 

Old 
U=–.8 

–1 

+1 

p=.9 
p=.1 
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Key Observation: Temporal Consistency"

•  Utilities of states are not independent!
•  The utility of each state equals its own reward 

plus the expected utility of its successor 
states: !

  

€ 

Ut = rt+1 +γ rt+2 +γ 2rt+3 +γ 3rt+4L

= rt+1 +γ rt+2 +γ rt+3 +γ 2rt+4L( )
= rt+1 +γUt+1

€ 

Uπ (s) = R(s) +γ P( ʹ′ s | s, π (s))
ʹ′ s 
∑ Uπ ( ʹ′ s )

The key fact:!
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Adaptive dynamic programming"

•  Learn a model: transition probabilities, reward 
function!

•  Do policy evaluation!
•  Solve the Bellman equation either directly or 

iteratively (value iteration without the max)!
•  Learn model while doing iterative policy 

evaluation:!
•  Update the model of the environment after each 

step.  Since the model changes only slightly after 
each step, policy evaluation will converge quickly.!
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Temporal difference (TD) learning"

Approximate the constraint equations without 
solving them for all states.!

Modify U(i) whenever we see a transition from i 
to j using the following rule:!

The modification moves U(i) closer to satisfying 
the original equation.!

Q.  Why does it work?!

U(i)←U(i) +α R(i) +U( j) −U(i)[ ]
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TD learning contd."

U(i)← (1− α )U(i) + α R(i) +U( j)[ ]

state i 

state j 

R(i) 
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Passive RL: review"

•  Agent has fixed policy and learns utilities!
•  Barto: “not really RL: it is prediction”!

•  Direct utility estimation!
•  Collect samples of quantity to be estimated!
•  Average them!
•  Or use an incremental method….!
•  Does not take advantage of relationship between utilities of different states!

•  Adaptive Dynamic Programming (ADP)!
•  Learn a model!
•  Do DP on it!
•  Can interleave these (modified policy iteration)!

•  Temporal Difference (TD) Learning!
•  Use an error to make estimates adhere to constraint!
•  Does not need a model!
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A Bit of Terminology"

•  Utilities (U) = Values (V)!
•  Return: discounted sum of rewards!

•  Return from a state: the discounted sum of 
rewards accumulated after visiting that state!

•  Same as “reward-to-go”!
•  Utility (or value) of a state is the expected return 

from that state!
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More on TD Learning"

•  TD methods do not require a model of the 
environment, only experience!

•  You can learn before knowing the final outcome!
•  Less memory!
•  Less peak computation!
•  You can learn without the final outcome from 

incomplete sequences!
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You are the Predictor"

Suppose you observe the following 8 episodes: 

A, 0, B, 0 
B, 1 
B, 1 
B, 1 
B, 1 
B, 1 
B, 1 
B, 0 

V(A)?
V(B)?
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You are the Predictor"

V(A)?
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You are the Predictor"

•  The prediction that best matches the training data is 
V(A)=0!
•  This minimizes the mean-square-error on the training set!
•  This is what direct utility estimation gets!

•  If we consider the sequentiality of the problem, then 
we would set V(A)=.75!
•  This is correct for the maximum likelihood estimate of a 

Markov model generating the data !
•  i.e, if we do a best fit Markov model, and assume it is 

exactly correct, and then compute what it predicts (how?)!
•  This is called the certainty-equivalence estimate!
•  This is what TD gets!
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TD learning of Action-Values (for a given policy)"

€ 

Qπ (s,a) = Utility of doing action a in state s	

i.e.: Total amount of reward expected !
over the future if you do action a in !
state s  and thereafter follow policy π	


€ 

Uπ (s) =max
a
Qπ (s,a)

The utility of a state is the utility of doing the best action 
from that state:!
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TD Learning of Action-Values (for a given policy)"

Estimate Qπ  for the current behavior policy π.

After every transition from a nonterminal state st ,  do this :

Q st , at( )←Q st , at( ) + α rt+1 +γ Q st+1,at+1( ) −Q st ,at( )[ ]
If st+1 is terminal,  then Q(st+1, at+1 ) = 0.
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Active RL"

•  Passive agent follows a fixed policy, 
estimates expected utilities!

•  Active agent needs to decide on what actions 
to perform to maximize expected utility!

Passive agent: faces a prediction problem!
Active agent: faces a control problem!
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Key Fact"

•  A greedy agent is one that always takes the 
action that maximizes its current utility 
estimates!

•  If its utility estimates are correct, i.e., it has 
learned the true utility function (or optimal 
value function), then a greedy agent acts 
optimally.!
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Exploration/Exploitation Dilemma"

•  Exploitation:  act according to your current 
estimates (exploit current “knowledge”).!

•  Exploration: do something else!!

•  You canʼt do both at the same time.!
•  How do you handle the tradeoff?!
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Whatʼs the best exploration policy?"

Assume you've learned a utility function, "
How do you select actions?"

Greedy Action Selection:"
"Always select the action that looks best:"

ε-Greedy Action Selection:!
Be greedy most of the time!
Occasionally take a random action!

Other Methods:"
"Boltzmann distribution, keep track of 
confidence intervals,  etc."

€ 

π(s) = argmax
a
Q(s,a)

The simplest 
possible thing!!

Current estimate!
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ε-Greedy Action Selection"

•  Greedy action selection:!

•  ε-Greedy:!
at = at

* = argmax
a
Qt(a)

at*  with probability 1 − ε
random action with probability ε{at =

. . . the simplest way to try to balance exploration and exploitation!
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More on Exploration"

•  GLIE schemes: “Greedy in the Limit of Infinite 
Exploration”!
•  Simplest maybe: ε-Greedy with decreasing ε	

•  Optimistic initial estimates, fading out with 

increasing visitations	

•  “Exploration Bonuses”!
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Sarsa"

Turn passive learning of action values into an active 
method by always updating the policy to be greedy 
with respect to the current estimate: !
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Q-Learning"

One - step Q - learning :

Q st , at( )←Q st , at( ) + α rt+1 +γ max
a
Q st+1, a( ) −Q st , at( )[ ]
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Cliffwalking"

ε-greedy, ε = 0.1!
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On-Policy vs. Off-Policy"

•  Behavior policy: the policy the agent is using.!
•  Estimation policy: the policy the agent is 

evaluating!

•  On-Policy methods:  !
•  Estimation policy = Behavior policy!

•  Off-Policy methods: !
•  Estimation policy = Behavior policy !

SARSA!

Q-learning!
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Generalization in RL"

•  So far only considered lookup table 
representations of utility functions.!

•  What if the state set is huge? e.g. 
Backgammon!

•  Use function approximation methods!
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Features or Basis Functions"

•  E.g., linear function approximation: represent 
U or Q as a linear combination of features (or 
basis functions              :!

  

€ 

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

  

€ 

f1,K fn

€ 

n <<  number of states
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Gradient ascent TD learning"

€ 

θ i←θ i +α R(s) + γ max ˆ Q θ ( ʹ′ s 
ʹ′ a 

, ʹ′ a ) − ˆ Q θ (s,a)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
∂ ˆ Q θ (s,a)
∂θ i

€ 

θ i←θ i +α R(s) + γ ˆ U θ ( ʹ′ s ) − ˆ U θ (s)[ ]∂
ˆ U θ (s)
∂θ i

For state-value functions:!

For action-value functions:!
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For Linear Function Approximation"

  

€ 

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

€ 

∂ ˆ U θ (s)
∂θ i

= ?
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For Linear Function Approximation"

  

€ 

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

€ 

∂ ˆ U θ (s)
∂θ i

= f i(s)
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“Coarse Coding”"
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Tile Coding"

•  Binary feature for each tile!
•  Number of features present 

at any one time is constant!
•  Binary features means 

weighted sum easy to 
compute!

•  Easy to compute indices of 
the freatures present!
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Radial Basis Functions (RBFs)"

€ 

fi(s) = exp −
s − ci

2

2σ i
2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

e.g., Gaussians!
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Nonlinear Function Approx."

Start with a random network!
Play very many games against self!
Learn a value function using TD with backpropagation from this 

simulated experience!

This produces arguably the best player in the world"

Action selection"
by 2–3 ply search"

Value 

TD error 

Tesauro, 1992–1995"TD-Gammon"
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Eligibility traces: Sarsa(λ) Example"

•  With one trial, the agent has much more information about how 
to get to the goal !
•  not necessarily the best way!

•  Can considerably accelerate learning!
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What you donʼt need to know for the exam"

•  Policy search (Sec. 21.5)!
•  Formulas for SARSA and Q-Learning update 

rules!
•  Exploration and bandits (the box on p. 841)!
•  Byesian RL!
•  Robust control theory!



Thatʼs all (!)"


