
1

CMPSCI 383  
December 8, 2011!

Review II"

2

General Information about the Final"

•  Closed book closed notes!
•  Includes midterm material too!
•  But expect more emphasis on later material!

What you should know!

4

Chapter 16: Utility Theory"

•  Maximum expected utility (MEU) principle!
•  Utility and preferences: rational preferences!
•  Utility of money!

•  Risk averse!
•  Risk seeking!

•  What do humans do?!
•  Multiattribute utility functions!

•  Pure dominance!
•  Preference structure!

•  Decision networks!

5

MEU"

€

EU(a | e) = P(Result(a) = ʹ′ s | a,e)U(ʹ′ s)
ʹ′ s
∑

action = argmax
a

EU(a | e)

6

Constraints"

You donʼt have to memorize these, but understand them.!

7

Relationship between preferences and utilities"

8

Money and Risk"

Prefer a sure thing with a payoff less than the EMV!

Prefer a gamble L over
EMV(L)!

9

Humans?"

•  Normative theory!
•  Descriptive theory!
•  Give an example of “irrational” human

behavior.!
•  Certainty effect!
•  Ambiguity effect!
•  Framing effect!
•  Anchoring effect!

•  Tversky and Kahneman !

10

Multiattribute Utility"

11

Additive value functions"

•  What is?!

•  Why?!
•  Often a good way to describe preferences when

multiple attributes are involved!

12

What you donʼt need to know for the exam"

•  The 6 constraints for preference relation (but
be able to understand one if given)!

•  Micromort, QALY!
•  Certainty equivalent, insurance premium!
•  Optimizerʼs curse!
•  Stochastic dominance!
•  Mutual preference independence!
•  Preferences with uncertainty (sec. heading on

p. 625)!
•  Secs. 16.5-16.7!

13

Chapter 17: Making Complex Decisions"

•  Sequential decision problems: MDPs!
•  Policy!
•  Optimal policy!
•  Utilities over time!

•  Additive!
•  Discounted!

•  Utilities of states!
•  Policy Evaluation!

•  Bellman equation!
•  Value Iteration!
•  Policy Iteration!

•  Modified policy iteration!
•  Asynchronous policy iteration!

14

A Simple Example"

•  “Gridworld” with 2 Goal states!
•  Actions: Up, Down, Left, Right!
•  Fully observable: Agent knows where it is!

1231234START0.80.10.1(a)(b)–1+ 1

15

Transition Model"

1231234START0.80.10.1(a)(b)–1+ 1

16

Markov Assumption"

1231234START0.80.10.1(a)(b)–1+ 1

17

Agentʼs Utility Function"

•  Performance depends on the entire sequence of
states and actions.!
•  “Environment history”!

•  In each state, the agent receives a reward R(s).!
•  The reward is real-valued. It may be positive or

negative.!
•  Utility of environment history = sum of reward

received.!

18

Reward function"

1231234START0.80.10.1(a)(b)–1+ 1

-­‐.04	
 -­‐.04	
 -­‐.04	

-­‐.04	

-­‐.04	

-­‐.04	

-­‐.04	
 -­‐.04	

19

Decision Rules"

•  Decision rules say what to do in each state.!
•  Often called policies, π.
•  Action for state s is given by π(s).!

20

Our Goal"

•  Find the policy that maximizes the expected
sum of rewards.!

•  Called an optimal policy.!

21

Markov Decision Process (MDP)"

•  M=(S,A,P,R)!
•  S = set of possible states!
•  A = set of possible actions!
•  P(sʼ|s,a) gives transition probabilities!
•  R = reward function!

•  Goal: find an optimal policy, π*.!

22

Finite/Infinite Horizon"

•  Finite horizon: the “game” ends after N steps.!
•  Infinite horizon: the “game” never ends!
•  “With a finite horizon, the optimal action in a

given state could change over time.”!
•  The optimal policy is nonstationary.!

•  With infinite horizon, the optimal policy is
stationary.!

23

Utilities over time"

•  Additive rewards:!

•  Discounted rewards:!

•  Discount factor:!

24

Utility of States"

•  Given a policy, we can define the utility of a
state:!

25

Policy Evaluation"

•  Finding the utility of states for a given policy.!

•  Solve a system of linear equations:!

•  An instance of a “Bellman Equation”.!€

π

€

π

26

Policy Evaluation"

•  The n linear equations can be solved in O(n3)
with standard linear algebra methods.!

•  If O(n3) is still too much, we can do it iteratively:!

•  An instance of value iteration---for a fixed policy!€

π

€

π

27

Optimal Policy"

•  Optimal policy doesnʼt depend on what state
you start in (for infinite horizon discounted case).!

•  Optimal policy: !
•  True utility of a state:!

€

π*

“optimal value function”!

28

Selecting optimal actions"

•  Given the true U(s) values, how can we select
actions? (Maximum expected utility – MEU)!

29

Utility and Rewards"

•  Utility = long term total reward from s onwards!
•  Reward = short term reward from s!

30

Utility"

123123–1+ 140.6110.8120.6550.7620.9180.7050.6600.868 0.388

31

Searching for Optimal Policies"

•  Bellman Equation!

•  If we write out the Bellman equation for all n
states, we get n equations, with n unknowns: U(s).!

•  We can solve this system of equations to
determine the Utility of every state.!

32

Value Iteration"

•  The equations are non-linear, so we canʼt use
standard linear algebra methods.!

•  Value iteration: start with random initial values
for each U(s), iteratively update each value to
fit the fight-hand side of the equation:!

33

Value Iteration"

•  The update is applied simultaneously to every
state.!

•  If this update is applied infinitely often, we are
guaranteed to find the true U(s) values.!
•  There is one unique solution!

•  Given the true U(s) values, how can we select
actions? (Maximum expected utility – MEU)!

34

Policy Iteration"

•  Policy iteration interleaves two steps:!
•  Policy evaluation: Given a policy, compute the

utility of each state for that policy!
•  Modified policy iteration: donʼt do this to completion!

•  Policy improvement: Calculate a new MEU
policy!

•  Terminate when the policy doesnʼt change
the utilities.!

•  Guaranteed to converge to an optimal
policy!

35

Asynchronous Policy Iteration"

•  We said the utility of every state is updated
simultaneously. This isnʼt necessary.!

•  You can pick and subset of the states and
apply either policy improvement or value
iteration to that subset.!

•  Given certain conditions, this is also
guaranteed to converge to an optimal policy.!

36

What you donʼt have to know for the exam"

•  Average reward case!
•  Convergence details for VI: contractions (Sec.

17.2.3)!
•  Secs. 17.4 -17.6: POMDPs, Games,

Mechanism design!

37

Chapter 18: Learning from Examples"
•  Types of learning!
•  Supervised learning!

•  Decision tree induction!
•  Univariate Linear Regression!

•  Batch gradient descent!
•  Stochastic gradient descent!

•  Multivariate Linear Regression!
•  Regularization!

•  Linear Classifiers!
•  Perceptron learning rule!

•  Logistic Regression!

38

Types of learning"

•  Unsupervised learning!
•  Reinforcement learning!
•  Supervised learning!
•  Semi-supervised learning!

39

Supervised Learning"

40

Supervised Learning"

41

Supervised Learning"

42

Supervised Learning"

43

Supervised Learning"

44

Supervised Learning"

45

Terms to know for supervised learning"

•  Training set!
•  Test set!
•  Generalization!
•  Classification!
•  Regression!
•  Hypothesis space!
•  Consistent hypothesis!
•  Ockhamʼs razor!
•  Overfitting!

•  Cross-validation!
•  Regularization!
•  Model selection!
•  Loss function!
•  Generalization loss!
•  Empirical loss!

46

Important issues"

•  Generalization !
•  Overfitting!
•  Cross-validation!

•  Holdout cross validation!
•  K-fold cross validation!
•  Leave-one-out cross-validation!

•  Model selection!

47

Recall Notation"

€

(x1,y1), (x2,y2),K (xN ,yN) training set!

Where each was generated by !
an unknown function!

€

y j

€

y = f (x)

Discover a function that best
approximates the true function!

€

h

€

f

hypothesis!

48

Decision trees"

49

Expressiveness?"

•  Consider only Boolean case!
•  How many Boolean functions are there of n

Boolean attributes?!
•  Functions that canʼt be compactly

represented by a decision tree?!

50

Splitting the examples"

51

Final decision tree from the examples"

52

Choosing Attribute Tests"

•  Entropy!
•  What does it measure?!

•  Information gain!
•  What does it measure?!

53

Loss Functions"

€

L(x,y, ˆ y) = Utility(result of using y given input x)
 −Utility(result of using ˆ y given input x)€

Suppose the true prediction for input x is f (x) = y
but the hypothesis gives h(x) = ˆ y

€

Simplified version : L(y, ˆ y)

€

Absolute value loss : L1(y, ˆ y) = y − ˆ y

Squared error loss : L2(y, ˆ y) = y − ˆ y ()2

0/1 loss : L0 /1(y, ˆ y) = 0 if y = ˆ y , else 1

Generalization loss: expected loss over all possible examples!
Empirical loss: average loss over available examples!

54

Univariate Linear Regression"

55

Univariate Linear Regression contd."

€

w = w0,w1[]
hw (x) = w1x + w0

weight vector!

Find weight vector that minimizes empirical loss,
e.g., L2:!

€

Loss(hw) = L2(y j , hw (x j)) =
j=1

N

∑ (y j − hw (x j))
2 =

j=1

N

∑ (y j − (w1x j + w0))
2

j=1

N

∑

€

w* = argminw Loss(hw)

i.e., find such that!

€

w*

56

Weight Space"

57

Finding w*"

€

∂
∂w0

(y j − (w1x j + w0))2 = 0 and
j=1

N

∑ ∂
∂w1

(y j − (w1x j + w0))2 = 0
j=1

N

∑

Find weights such that:!

58

Gradient Descent"

€

wi← wi −α
∂
∂wi

Loss(w)

step size or !
learning rate!

59

Gradient Descent contd."

€

w0← w0 +α(y − hw (x)) and w1← w1 +α(y − hw (x))x

For one training example :!

€

(x,y)

€

w0← w0 +α (y j − hw (x j))
j
∑ and w1← w1 +α (y j − hw (x j))

j
∑ x j

For N training examples:!

batch gradient descent!

stochastic gradient descent: take a step for
one training example at a time!

60

The Multivariate case"

€

hsw (x j) = w0 + w1x j,1 +L+ wnx j ,n = w0 + wix j,i
i
∑

Augmented vectors: add a feature to each by tacking on a 1:!

€

x j,0 =1

€

hsw (x j) = w⋅ x j = wTx j = wix j,i
i
∑

Then:!

€

wi← wi +α (y j − hw (x j))
j
∑ x j,i

And batch gradient descent update becomes:!

€

x

Done after each example: Widrow-Hoff rule!

61

The Multivariate case contd."

Or, solving analytically:!

€

yLet be the vector of outputs for the training examples!

€

X data matrix: each row is an input vector!

€

y = XwSolving this for :!

€

w*

€

w* = XTX()−1XTy

pseudo inverse!

62

Regularization"

€

Cost(h) = EmpLoss(h) + λComplexity(h)

For example : Complexity(hw) = Lq (w) = wi
i
∑

q

The process of explicitly penalizing hypothesis complexity!

63

Linear Classification: hard thresholds"

64

Linear Classification: hard thresholds contd."

•  Decision Boundary:!
•  In linear case: linear separator, a hyperplane!

•  Linearly separable: !
•  data is linearly separable if the classes can be

separated by a linear separator!
•  Classification hypothesis:!

€

hw (x) = Threshold(w⋅ x) where Threshold(z) =1 if z ≥ 0 and 0 otherwise

65

Perceptron Learning Rule"

€

For a single sample (x,y) :

wi← wi +α y − hw (x)()xi

€

• If the output is correct, i.e., y =hw (x), then the weights don't change
• If y =1 but hw (x) = 0, then wi is increased when xi is positive and decreased when xi is negative.
• If y = 0 but hw (x) =1, then wi is decreased when xi is positive and increased when xi is negative.

Perceptron Convergence Theorem: For any data set
thatʼs linearly separable and any training procedure
that continues to present each training example, the
learning rule is guaranteed to find a solution in a finite
number of steps.!

66

Linear Classification with Logistic Regression"

An important function!!

67

Logistic Regression"

€

hw (x) = Logistic(w⋅ x) =
1

1+ e−w⋅x

€

€

For a single sample (x,y) and L2 loss function :

wi← wi +α y − hw (x)()hw (x) 1− hw (x)()xi

derivative of logistic function!

68

What you donʼt have to know for the exam"

•  Information gain formula!
•  Broadening applicability of decision trees!
•  Wrapper!
•  Small and large-scale learning!
•  Minimum description length (MDL)!
•  Learning theory: Sec. 18.5!
•  Formula for analytic solution of regression problem!
•  L1 vs. L2 regularization!
•  Logistic regression learning rule!

69

Artificial Neural Networks"

•  Networks of relatively simple processing
units, which are very abstract models of
neurons; the network does the computation
more than the units.!

70

Neuron-like units"

j i

€

wi, j

71

Typical activation functions"

72

NNs and logic"

Units with step function activation functions!

McCulloch and Pitts, 1943: showed that whatever!
you can do with logic networks, you can do with!
networks of abstract neuron-like units.!

73

Network structures"

•  Feed-forward vs. recurrent networks!
•  Multi-layer feed-forward networks!

Input nodes! Hidden nodes!

Output node(s)!

74

Perceptrons"

•  Name given in 1950s to layered feed-forward networks.!

O = Step0(Wj Ij)
j
∑

 = Step0(W ⋅ I)

75

What can perceptrons represent"

•  Only linearly separable functions!

76

Back-propagation learning"

€

Errk = k th component of y −hw
w j,k← w j ,k +α × a j × Errk × ʹ′ g (ink)

letting Δ k = Errk ʹ′ g (ink) this becomes
w j,k← w j ,k +α × a j × Δ k

To update weights from hidden units to output unit!

k j

€

w j,k

output unit!hidden unit!
i

€

wi, j

input unit!

77

Back-prop contd."

To update weights from input units to hidden units!

€

Δ j = ʹ′ g (in j) w j ,kΔ k
k
∑

wi, j← wi, j +α × ai × Δ j

k j

€

w j,k

output unit!hidden unit!
i

€

wi, j

input unit!

78

Back-prop as gradient descent"

€

Err = (yk − ak)
2

k
∑

sum squared error!

An error surface for net with!
linear activation functions!

If nonlinear, much more !
complicated: local minima!

79

Comments on network learning"

•  Expressiveness: given enough hidden units,
can represent any function (almost).!

•  Computational efficiency: generally slow to
train, but fast to use once trained.!

•  Generalization: good success in a number of
real-world problems.!

•  Sensitivity to noise: very tolerant to noise in
data!

80

Comments contd."

•  Transparency: not good!!
•  Prior knowledge: not particularly easy to

insert prior knowledge, although possible.!

81

Nonparametric Methods"

•  Parametric model: a learning model that has
a set of parameters of fixed size!
•  e.g., linear models, neural networks (of fixed size)!

•  Nonparametric model: a learning model
whose set of parameters is not bounded!
•  Parameter set grows with the number of training

examples!
•  e.g., just save the examples in a lookup table!

82

Nearest Neighbor Models"

•  K-nearest neighbors algorithm:!
•  Save all the training examples!
•  For classification: find k nearest neighbors of the

input and take a vote (make k odd)!
•  For regression: take mean or median of the k

nearest neighbors, or do a local regression on
them!

•  How do you measure distance?!
•  How do you efficiently find the k nearest

neighbors?!

83

Distance Measures"

€

Minkowski distance

Lp (x j ,xq) = x j,i − xq,i

p

i
∑
⎛

⎝
⎜

⎞

⎠
⎟

1/ p

€

p =1 Manhattan distance
p = 2 Euclidean distance

Hamming distance for Boolean attribute values

84

k-nearest neighbor for k=1 and k=5"

85

Curse of Dimensionality"

In high dimensions, the nearest points tend to be far away.!

86

Nonparametric Regression"

87

What you donʼt have to know for the exam"

•  Details of backpropagation learning method
(but know the general idea…)!

•  Optimal brain damage!
•  Locality-sensitive hashing!
•  Locally weighted regression!
•  Secs. 18.9—18.11!

88

Chapter 20: Learning Probabilistic Models"

•  Full Bayesian Learning!
•  MAP approximation !
•  ML approximation!
•  ML parameter learning in Bayes nets!

•  Naïve Bayes Model!
•  Bayesian parameter learning!

•  Beta family of distributions!
•  Conjugate families !

•  Latent variables!

89

Full Bayesian Learning"

90

MAP approximation"

91

ML approximation"

92

ML parameter learning in Bayes nets"

93

Naïve Bayes Model"

C

€

X1

€

Xn

€

X2

class label!

Attributes:
independent given C!

€

P(C | x1,x2,K,xn) = α P(C) P(xi |C)
i
∏

€

CNB = argmaxC∈lablesP(C | x1,x2,K,xn) = argmaxαP(C) P(xi |C)
i
∏

Naïve Bayes Classifier:!

94

Naïve Bayes contd."

€

CNB = argmaxC∈lableslog P(C | x1,x2,K,xn) = logP(C) P(xi |C)
i
∏

 = logP(c) + log
i
∑ P(xi |C)

Or, taking logs and dropping α :!

 a linear classifier!

€

CNB = argmaxC∈lablesP(C | x1,x2,K,xn) = argmaxαP(C) P(xi |C)
i
∏

95

Full Bayesian parameter learning"

•  ML learning is simple but has some problems:!
•  e.g., after seeing one sample, the ML estimate is

%100 that sample!
•  Bayesian approach starts with a hypothesis

prior, which is revised using Bayes rule as
more data comes in.!

•  E.g., consider one unknown parameter !

€

θ

We start with a prob. distribution over values of :!
e.g., the prior probability that a bag has a fraction
of cherries.!

€

θ

€

θ

96

Beta family of distributions"

€

beta a,b[](θ) = αθ a−1 1−θ()b−1

€

a and b are called hyperparameters

97

Conjugate families of distributions"

•  E.g., the Beta family!

Closed under Bayesian updates!

€

P(θ |D1 = cherry) = α P(D1 = cherry |θ)P(θ)

 = ʹ′ α θ⋅ beta a,b[](θ) = ʹ′ α θ⋅ θ a−1 1−θ()b−1

 = ʹ′ α θ a 1−θ()b−1
= beta a +1,b[](θ)

98

Latent variables"

99

What you donʼt have to know for the exam"

•  MDL method!
•  ML learning for continuous models (Sec.

20.2.3)!
•  Learning Bayes net structures (Sec. 20.2.5)!
•  Density estimation (Sec. 20.2.6)!
•  Learning with hidden variables (Sec. 20.3):

but know what a latent variable is and why
useful!

100

Chapter 21: Reinforcement Learning"

101

Chapter 21: Reinforcement Learning"

•  Some kinds of RL agents!
•  Utility-based agent: learns utility function on states

and uses it to select actions!
•  Needs an environment model to decide on actions!

•  Q-learning agent: leans and action-utility
functions, or Q-function, giving expected utility for
taking each action in each state.!
•  Does not need an environment model.!

•  Reflex agent: learn a policy without first learning a
state-utility function or a Q-function!

102

Passive versus active learning "

•  A passive learner simply watches the world
going by and tries to learn the utility of being
in various states.!

•  An active learner must also act using the
learned information, and can use its problem
generator to suggest explorations of
unknown portions of the environment.!

103

Passive learning"

Given (but agent doesnʼt know this):"
•  A Markov model of the environment.!
•  States, with probabilistic actions.!
•  Terminal states have rewards/utilities.!

Problem:"
•  Learn expected utility of each state.!

Note: if agent knows how the environment and its
actions work, can solve the relevant Bellman equation
(which would be linear).!

104

Learning utility functions"

•  A training sequence (or episode) is an
instance of world transitions from an initial
state to a terminal state.!

•  The additive utility assumption: utility of a
sequence is the sum of the rewards over the
states of the sequence.!

•  Under this assumption, the utility of a state is
the expected reward-to-go of that state.!

105

Direct Utility Estimation"

•  For each training sequence, compute the
reward-to-go for each state in the sequence
and update the utilities.!

•  This is just learning the utility function from
examples.!

•  Generates utility estimates that minimize the
mean square error (LMS-update).!

106

Direct Utility Estimation"

U(i)← (1− α)U(i) + α REWARD(training sequence)

state i!

107

Problems with direct utility estimation"

Converges slowly because it ignores the
relationship between neighboring states:!

New
U=?

Old
U=–.8

–1

+1

p=.9
p=.1

108

Key Observation: Temporal Consistency"

•  Utilities of states are not independent!
•  The utility of each state equals its own reward

plus the expected utility of its successor
states: !

€

Ut = rt+1 +γ rt+2 +γ 2rt+3 +γ 3rt+4L

= rt+1 +γ rt+2 +γ rt+3 +γ 2rt+4L()
= rt+1 +γUt+1

€

Uπ (s) = R(s) +γ P(ʹ′ s | s, π (s))
ʹ′ s
∑ Uπ (ʹ′ s)

The key fact:!

109

Adaptive dynamic programming"

•  Learn a model: transition probabilities, reward
function!

•  Do policy evaluation!
•  Solve the Bellman equation either directly or

iteratively (value iteration without the max)!
•  Learn model while doing iterative policy

evaluation:!
•  Update the model of the environment after each

step. Since the model changes only slightly after
each step, policy evaluation will converge quickly.!

110

Temporal difference (TD) learning"

Approximate the constraint equations without
solving them for all states.!

Modify U(i) whenever we see a transition from i
to j using the following rule:!

The modification moves U(i) closer to satisfying
the original equation.!

Q. Why does it work?!

U(i)←U(i) +α R(i) +U(j) −U(i)[]

111

TD learning contd."

U(i)← (1− α)U(i) + α R(i) +U(j)[]

state i

state j

R(i)

112

Passive RL: review"

•  Agent has fixed policy and learns utilities!
•  Barto: “not really RL: it is prediction”!

•  Direct utility estimation!
•  Collect samples of quantity to be estimated!
•  Average them!
•  Or use an incremental method….!
•  Does not take advantage of relationship between utilities of different states!

•  Adaptive Dynamic Programming (ADP)!
•  Learn a model!
•  Do DP on it!
•  Can interleave these (modified policy iteration)!

•  Temporal Difference (TD) Learning!
•  Use an error to make estimates adhere to constraint!
•  Does not need a model!

113

A Bit of Terminology"

•  Utilities (U) = Values (V)!
•  Return: discounted sum of rewards!

•  Return from a state: the discounted sum of
rewards accumulated after visiting that state!

•  Same as “reward-to-go”!
•  Utility (or value) of a state is the expected return

from that state!

114

More on TD Learning"

•  TD methods do not require a model of the
environment, only experience!

•  You can learn before knowing the final outcome!
•  Less memory!
•  Less peak computation!
•  You can learn without the final outcome from

incomplete sequences!

115

You are the Predictor"

Suppose you observe the following 8 episodes:

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

V(A)?
V(B)?

116

You are the Predictor"

V(A)?

117
117

You are the Predictor"

•  The prediction that best matches the training data is
V(A)=0!
•  This minimizes the mean-square-error on the training set!
•  This is what direct utility estimation gets!

•  If we consider the sequentiality of the problem, then
we would set V(A)=.75!
•  This is correct for the maximum likelihood estimate of a

Markov model generating the data !
•  i.e, if we do a best fit Markov model, and assume it is

exactly correct, and then compute what it predicts (how?)!
•  This is called the certainty-equivalence estimate!
•  This is what TD gets!

118

TD learning of Action-Values (for a given policy)"

€

Qπ (s,a) = Utility of doing action a in state s	

i.e.: Total amount of reward expected !
over the future if you do action a in !
state s and thereafter follow policy π	

€

Uπ (s) =max
a
Qπ (s,a)

The utility of a state is the utility of doing the best action
from that state:!

119

TD Learning of Action-Values (for a given policy)"

Estimate Qπ for the current behavior policy π.

After every transition from a nonterminal state st , do this :

Q st , at()←Q st , at() + α rt+1 +γ Q st+1,at+1() −Q st ,at()[]
If st+1 is terminal, then Q(st+1, at+1) = 0.

120

Active RL"

•  Passive agent follows a fixed policy,
estimates expected utilities!

•  Active agent needs to decide on what actions
to perform to maximize expected utility!

Passive agent: faces a prediction problem!
Active agent: faces a control problem!

121

Key Fact"

•  A greedy agent is one that always takes the
action that maximizes its current utility
estimates!

•  If its utility estimates are correct, i.e., it has
learned the true utility function (or optimal
value function), then a greedy agent acts
optimally.!

122

Exploration/Exploitation Dilemma"

•  Exploitation: act according to your current
estimates (exploit current “knowledge”).!

•  Exploration: do something else!!

•  You canʼt do both at the same time.!
•  How do you handle the tradeoff?!

123

Whatʼs the best exploration policy?"

Assume you've learned a utility function, "
How do you select actions?"

Greedy Action Selection:"
"Always select the action that looks best:"

ε-Greedy Action Selection:!
Be greedy most of the time!
Occasionally take a random action!

Other Methods:"
"Boltzmann distribution, keep track of
confidence intervals, etc."

€

π(s) = argmax
a
Q(s,a)

The simplest
possible thing!!

Current estimate!

124

ε-Greedy Action Selection"

•  Greedy action selection:!

•  ε-Greedy:!
at = at

* = argmax
a
Qt(a)

at* with probability 1 − ε
random action with probability ε{at =

. . . the simplest way to try to balance exploration and exploitation!

125

More on Exploration"

•  GLIE schemes: “Greedy in the Limit of Infinite
Exploration”!
•  Simplest maybe: ε-Greedy with decreasing ε	

•  Optimistic initial estimates, fading out with

increasing visitations	

•  “Exploration Bonuses”!

126

Sarsa"

Turn passive learning of action values into an active
method by always updating the policy to be greedy
with respect to the current estimate: !

127

Q-Learning"

One - step Q - learning :

Q st , at()←Q st , at() + α rt+1 +γ max
a
Q st+1, a() −Q st , at()[]

128

Cliffwalking"

ε-greedy, ε = 0.1!

129

On-Policy vs. Off-Policy"

•  Behavior policy: the policy the agent is using.!
•  Estimation policy: the policy the agent is

evaluating!

•  On-Policy methods: !
•  Estimation policy = Behavior policy!

•  Off-Policy methods: !
•  Estimation policy = Behavior policy !

SARSA!

Q-learning!

130

Generalization in RL"

•  So far only considered lookup table
representations of utility functions.!

•  What if the state set is huge? e.g.
Backgammon!

•  Use function approximation methods!

131

Features or Basis Functions"

•  E.g., linear function approximation: represent
U or Q as a linear combination of features (or
basis functions :!

€

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

€

f1,K fn

€

n << number of states

132

Gradient ascent TD learning"

€

θ i←θ i +α R(s) + γ max ˆ Q θ (ʹ′ s
ʹ′ a

, ʹ′ a) − ˆ Q θ (s,a)
⎡

⎣ ⎢
⎤

⎦ ⎥
∂ ˆ Q θ (s,a)
∂θ i

€

θ i←θ i +α R(s) + γ ˆ U θ (ʹ′ s) − ˆ U θ (s)[]∂
ˆ U θ (s)
∂θ i

For state-value functions:!

For action-value functions:!

133

For Linear Function Approximation"

€

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

€

∂ ˆ U θ (s)
∂θ i

= ?

134

For Linear Function Approximation"

€

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

€

∂ ˆ U θ (s)
∂θ i

= f i(s)

135

“Coarse Coding”"

136

Tile Coding"

•  Binary feature for each tile!
•  Number of features present

at any one time is constant!
•  Binary features means

weighted sum easy to
compute!

•  Easy to compute indices of
the freatures present!

137

Radial Basis Functions (RBFs)"

€

fi(s) = exp −
s − ci

2

2σ i
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e.g., Gaussians!

138

Nonlinear Function Approx."

Start with a random network!
Play very many games against self!
Learn a value function using TD with backpropagation from this

simulated experience!

This produces arguably the best player in the world"

Action selection"
by 2–3 ply search"

Value

TD error

Tesauro, 1992–1995"TD-Gammon"

139

Eligibility traces: Sarsa(λ) Example"

•  With one trial, the agent has much more information about how
to get to the goal !
•  not necessarily the best way!

•  Can considerably accelerate learning!

140

What you donʼt need to know for the exam"

•  Policy search (Sec. 21.5)!
•  Formulas for SARSA and Q-Learning update

rules!
•  Exploration and bandits (the box on p. 841)!
•  Byesian RL!
•  Robust control theory!

Thatʼs all (!)"

