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CMPSCI 383  
December 6, 2011!

Review I"
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General Information about the Final"

•  Closed book closed notes!
•  Includes midterm material too!
•  But expect more emphasis on later material!



What you should know!
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Chapter 6: Constraint Satisfaction Problems"

•  Representations: atomic, factored, structured!
•  Definition of a constraint satisfaction problem:!

•  In CSPs, states are defined by assignments of 
values to a set of variables X1...Xn. Each variable 
Xi has a domain Di of possible values.!

•  States are evaluated based on their consistency 
with a set of constraints C1...Cm over the values of 
the variables.!

•  A goal state is a complete assignment to all 
variables that satisfies all the constraints.!
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Example: Map coloring"

•  Variables —  
WA, NT, Q, NSW, V, SA, T!

•  Domains — Di = {red,green,blue}!
•  Constraints — adjacent regions must have different colors.!

•  E.g. WA ≠ NT (if the language allows this)!
•  E.g. ((WA,NT), [(red,green),(red,blue),(green,red),…])!

Allowable 
combinations of 

variables!
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Example: Map coloring"

•  Solutions are complete and consistent assignments:   
every variable assigned, all assignments legal, e.g.:!
!{WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}!



7 

Types of Constraints"

•  Unary constraint: concerns only a single value; 
e.g., SA ≠ green!

•  Binary constraint: concerns the relative values 
of two variables!

•  Global constraint: concerns an arbitrary 
number of variables,  e.g., Alldiff!
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Constraint graph"
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Local Consistency"

•  Node Consistency: Xi is node-consistent if every value in the 
domain Di satisfies all of Xiʼs unary constraints.!
•  A network is node-consistent if every variable is node-

consistent!
•  Arc Consistency: Xi is arc-consistent with respect to Xj if for 

every value in the domain Di there is some value in Dj that 
satisfies the binary constraint on arc (Xi,Xj)!
•  A network is arc-consistent if every variable is arc-consistent with 

every other variable!
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Arc Consistency (slightly different from the book)"
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Naive Search Formulation"

Let's start with the straightforward approach, then fix it 

States are defined by the values assigned so far 

  Initial state: the empty assignment { } 
  Successor function: assign a value to an unassigned variable that 

does not conflict with current assignment 
 fail if no legal assignments 

  Goal test: the current assignment is complete 

1.  This is the same for all CSPs 
2.  Every solution appears at depth n with n variables 

 use depth-first search 
3.  Path is irrelevant, so can also use complete-state formulation 
4.  b = (n - k )d at depth k, hence n! · dn leaves (d is domain size) 
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Backtracking Search"

  Variable assignments are commutative, i.e., 
[ WA = red then NT = green ] same as [ NT = green then WA = red ] 

  Only need to consider assignments to a single variable at each node 
 b = d and there are dn leaves 

  Depth-first search for CSPs with single-variable assignments is 
called backtracking search 

  Backtracking search is the basic uninformed algorithm for CSPs 
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Simple backtracking search"

•  Depth-first search!
•  Choose values for one variable at a time !
•  Backtrack when a variable has no legal 

values left to assign.!
•  If search is uninformed, then general 

performance is relatively poor!
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Improving backtracking efficiency"

•  Approaches!
•  Minimum remaining values heuristic (MRV)!

•  Select the most constrained variable  
(the variable with the smallest number  
of remaining values)!

•  Degree heuristic!
•  Select the variable that is involved in the largest number 

of constraints with other unassigned variables: The most 
constraining variable.!

•  Least-constraining value heuristic!
•  Given a variable, choose the least constraining value — 

the value that leaves the maximum flexibility for 
subsequent variable assignments.!
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Combining Search with Inference"

•  Forward checking!
•  Precomputing information needed by MRV!
•  Early stopping!

•  Constraint propagation!
•  Arc consistency (2-consistency)!
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Forward checking"

•  Can we detect inevitable failure early?!
•  And avoid it later?!

•  Yes — track remaining legal values for unassigned 
variables!

•  Terminate search when any variable has no legal 
values.!
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Forward checking"

•  Assign {WA=red}!
•  Effects on other variables connected by constraints 

with WA!
•  NT can no longer be red!
•  SA can no longer be red!
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Forward checking"

•  Assign {Q=green}!
•  Effects on other variables connected by constraints 

with WA!
•  NT can no longer be green!
•  NSW can no longer be green!
•  SA can no longer be green!
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Forward checking"

•  If V is assigned blue!
•  Effects on other variables connected to WA!

•  SA is empty!
•  NSW can no longer be blue!

•  FC has detected a partial assignment that is 
inconsistent with the constraints.!
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Forward checking"

•  Solving CSPs with combination of heuristics plus forward checking is 
more efficient than either approach alone.!

•  FC checking propagates information from assigned to unassigned 
variables but does not provide detection for all failures.!
•  NT and SA cannot be blue!!

•  Makes each current variable assignment arc consistent, but does not 
look far enough ahead to detect all inconsistencies (as AC-3 would)!
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Arc consistency"

•  X → Y is consistent iff!
! !for every value x of X there is some allowed y!

•  SA → NSW is consistent iff!
! !SA=blue and NSW=red!
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Arc consistency"

•  X → Y is consistent iff!
! !for every value x of X there is some allowed y!

•  NSW → SA is consistent iff!
! !NSW=red and SA=blue!
! !NSW=blue and SA=???!

Arc can be made consistent by removing blue from NSW!
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Arc consistency"

•  Arc can be made consistent by removing blue from NSW!
•  Recheck neighbours!

•  Remove red from V!
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Arc consistency"

•  Arc can be made consistent by removing blue from NSW!
•  Recheck neighbours!

•  Remove red from V!
•  Arc consistency detects failure earlier than forward checking!
•  Can be run as a preprocessor or after each assignment.!

•  Repeated until no inconsistency remains!
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Local search for csp"

•  Do we need the path 
to the solution or 
only the solution 
itself?!

•  Can we apply local 
search methods?!
•  Hillclimbing!
•  Simulated annealing!
•  Genetic algorithms!

•  Whatʼs a state?!
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Min-conflicts heuristic for local search"

•  To enable local search!
•  allow states with unsatisfied constraints!
•  operators reassign variable values!

•  Variable selection: randomly select any conflicted 
variable!

•  Value selection by min-conflicts heuristic!
•  choose value that violates the fewest constraints!
•  i.e., hill-climb with h(n) = total number of violated constraints!
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Example: 4-Queens"

•  States: 4 queens in 4 columns (44 = 256 states)!
•  Actions: move queen in column!
•  Goal test: no attacks; h(n) = 0!
•  Evaluation: h(n) = number of attacks!

•  Given random initial state, can solve n-queens in almost 
constant time for arbitrary n with high probability  
(e.g., n = 10,000,000).  Average of 50 steps for n = 1M.!
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Exploiting the structure of CSPs"

•  Decompose into  
independent problems!

•  Tree-structured CSPs can  
be solved in linear time!

•  Reduce problems to  
tree-structured CSPs!
•  Cycle cutset conditioning —  

Remove nodes to create trees!
•  Tree decomposition —  

Decompose problem into a  
tree-structured set of subproblems!
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Cycle cutset conditioning"

•  Want to create a tree!
•  What is a tree? !
•  Why do we want to create one?!
•  Tree-structured CSPs solvable in linear time!

•  Create a tree by deleting nodes !
•  How can you delete nodes in CSPs?!
•  Set value and restrict domains!

•  Does this always work well? !
•  No, what can we do about that?!
•  Step through possible settings!

•  Whatʼs the payoff?!
•  Big efficiency gains!
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Tree decomposition"

•  Again, want to create a tree!
•  Whatʼs another way of creating  

a tree?!
•  Merging nodes!

•  Donʼt need to memorize the following:!
•  Rules for doing this:!

•  Every variable in ≥1 subproblems!
•  All connected variable pairs, and assoc.  

constraints, in ≥1 subproblems!
•  If a variable appears in 2 subproblems, 

it must appear in all subproblems on the  
path connecting the two subproblems!

•  Now, how can we solve this new problem?!
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Things you should know about…"

•  Basic form of a CSP!
•  Be able to formulate a 

problem as a CSP!
•  Types of constraints!
•  Consistent assignment!
•  Complete assignment!
•  Constraint graph!
•  Constraint propagation!
•  Backtracking search for CSPs!
•  Heuristics to improve 

backtracking search!
•  MRV!
•  Degree heuristic!
•  Least-constraining value!

•  Interleaving search and 
inference!
•  Forward checking!
•  Arc consistency!

•  Local search!
•  Complete state formulation!
•  Min-conflicts heuristic!

•  Using problem structure!
•  Decomposing into 

independent subproblems!
•  Turn into a tree structured 

problem!
•  Basic knowledge of:!

•  Cutset conditioning!
•  Tree decomposition!
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What you donʼt need to know for the exam"

•  Continuous domains!
•  Bounds propagation!
•  Bounds consistent!
•  MAC!
•  Details of Intelligent 

backtracking!
•  Constraint weighting!
•  Directed arc 

consistency!

•  Value symmetry!
•  Symmetry-breaking 

constraint!
•  Details of cycle 

cutset conditioning!
•  Details of tree 

decomposition!
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Chapter 13: Quantifying Uncertainty"

•  Sources of uncertainty!
•  MEU principle!
•  Basics of probability theory!

•  Sample point/atomic event/possible world!
•  Random variables!
•  Joint and conditional distributions!
•  Independence:  absolute and conditional!
•  Bayes Rule!
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Conditional probability"

•  Definition of conditional probability:!
P(a | b) = P(a ∧ b) / P(b) if  P(b) > 0!

•  Product rule gives an alternative formulation:!
P(a ∧ b) = P(a | b) P(b) = P(b | a) P(a)!

•  Chain rule is derived by successive application of product rule:!

P(X1, …,Xn) != P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)!
                 != P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)!
                  != …!
                  != πi= 1 P(Xi | X1, … ,Xi-1)!

n 
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Independence"

A and B  independent (absolute, marginal) iff!
P(A |B) = P(A)   or   P(B |A) = P(B)   or  P(A, B) = P(A) P(B)!

A and B  conditionally independent given C iff!
P(A |B,C) = P(A |C)   or   P(B |A,C) = P(B |C)   !
or  P(A, B |C) = P(A |C) P(B |C)!
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Bayes Rule"

•  Product rule P(a∧b) = P(a | b) P(b) = P(b | a) P(a)!

!⇒ Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)!

•  or in distribution form !
" "P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y)!

•  Useful for assessing diagnostic probability from 
causal probability:!
•  P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)!
•  E.g., let M be meningitis, S be stiff neck:!

P(m|s) = P(s|m) P(m) / P(s) = 0.8 × 0.0001 / 0.1 = 0.0008!

•  Note: posterior probability of meningitis still very small!!
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Specifically (but not limited to) ----"

•  Be able to compute various probabilities, and 
probability distributions, from the full joint dist.
(cf. problem 13.8 p. 507)!

•  Applying Bayes rule!
•  E.g., diagnosis:  p(disease | symptoms) cf. 

problem 13.15 p. 508!
•  Equivalent statements for conditional 

independence: cf. problem 13.17, p. 508!
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What you donʼt need to know for the exam"

•  Wumpus world!
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Chapter 14: Probabilistic Reasoning"

•  Bayesian networks!
•  Exact Inference in Bayesian networks!
•  Approximate Inference in Bayesian networks!
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Bayesian networks"

•  A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of joint distributions!

•  Syntax:!
•  a set of nodes, one per variable!
•  a directed, acyclic graph (link ≈ "directly influences")!
•  a conditional distribution for each node given its parents:!

P (Xi | Parents (Xi))!

•  In the simplest case, conditional distribution 
represented as a conditional probability table (CPT) 
giving the distribution over Xi for each combination of 
parent values!



41 

Example"

•  Topology of network encodes conditional 
independence assertions:!

•  Weather is independent of the other variables!
•  Toothache and Catch are conditionally independent 

given Cavity!
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Example: Home security"
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Benefits: Compactness"

•  A CPT for Boolean Xi with  
k Boolean parents has  
2k rows for the combinations  
of parent values!

•  Each row requires  
one number p for Xi = true  
(the number for  Xi = false is just 1-p)!

•  If each variable has no more than k parents, the 
complete network requires O(n · 2k) numbers!

•  i.e., grows linearly with n, vs. O(2n) for the  
full joint distribution!

•  For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers  
(vs. 25-1 = 31)!
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Semantics"

•  The full joint distribution is defined  
as the product of the local conditional 
distributions:!

" "P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))!

•  Example  
P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)!
!= P(j|a) P(m|a) P(a|¬b,¬e) P(¬b) P(¬e)!

n 
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Conditional Independence"

Node X is conditionally 
independent of its non-
descendants given its 
parents.!
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Conditional Independence"

Node X is conditionally 
independent of all other 
nodes in the network given 
its “Markov blanket” (its 
parents, children, and their 
parents).!
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Alarm 

JohnCalls MaryCalls 

Conditional independence"

•  Are JohnCalls and MaryCalls independent?!
•  No, they are not completely independent!

•  If the value of Alarm is known, are JohnCalls and 
MaryCalls independent?!
•  Yes, for each known value of A, J and M are independent!

Alarm 
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Conditional independence"

•  Are Burglary and Earthquake cond. independent?!
•  Yes, nodes are conditionally independent of their non-

descendents given their parents!
•  Are they completely independent?!

•  No, one can ʻexplain awayʼ the other if Alarm is known.!

Burglary Earthquake 

Alarm Alarm 

Earthquake 
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Constructing Bayesian networks"

•  1. Choose an ordering of variables X1, … ,Xn!
•  2. For i = 1 to n!

•  add Xi to the network!
•  select parents from X1, … ,Xi-1 such that!

!P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)!

This choice of parents guarantees:!

P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1)        (chain rule)!
! ! != πi =1P (Xi | Parents(Xi))          (by constr.)!n 

n 
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•  Suppose we choose the ordering M, J, A, B, E!

Example"
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Summary"

•  Bayesian network:!
•  Directed acyclic graph whose nodes correspond to 

r.v.s; each note has a conditional distribution for its 
values given its parents.!

•  Provides a concise way to represent conditional 
independence relations!

•  Specifies the full joint distribution!
•  Often exponentially smaller than explicit 

representation of the joint distribution!



52 

What you donʼt need to know for the exam"

•  Noisy-OR, noisy-MAX, leak node!
•  Bayes nets with continuous variables!
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Inference in Bayesian networks"

•  Exact!
•  Inference with joint probability distributions!
•  Exact inference in Bayesian networks!
•  Inference by enumeration!
•  Complexity of exact inference!

•  Approximate!
•  Inference by stochastic simulation!
•  Simple sampling!
•  Rejection sampling!
•  Markov chain Monte Carlo (MCMC)!
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Inference terminology"

•  Conditional probability table: data structure that lists 
probabilities of a variable given one or more other 
variables.!

•  Joint distribution:  
distribution that is specified by a Bayesian network!

•  Inference: produces the probability distribution of one 
or more variables given one or more other variables.!
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Types of nodes in inference"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 

Evidence (or “observed”) variables 
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Types of nodes in inference"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 

Query variables!
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Types of nodes in inference"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 

Hidden variables 
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Simple inferences"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 
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Simple inferences"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 
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Simple inferences"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 
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More difficult inferences"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 
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P(B|j,m) = <0.284, 0.716> 

Inference by enumeration"
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Why approximate inference?"

•  Inference in singly connected networks  
is linear!!

•  ...but many networks are not singly connected!
•  Inference in multiply connected networks is 

exponential, even when the number of 
parents/node is bounded!

•  May be willing to trade some small error for 
more tractable inference!
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Stochastic simulation"

•  Core idea!
•  Draw samples from a sampling distribution defined  

by the network!
•  Compute an approximate posterior probability  

in a way that converges to the true probability!
•  Methods!

•  Simple sampling from an empty network!
•  Rejection sampling — reject samples that donʼt agree with 

the evidence!
•  Likelihood weighting — weight samples based on evidence!
•  Markov chain Monte Carlo — sample from a stochastic 

process whose stationary distribution is the true posterior!
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Simple sampling"

•  Given an empty network...!
•  And beginning with nodes without parents...!
•  We can sample from conditional distributions 

and instantiate all nodes.!
•  This will produce one element of the joint 

distribution.!
•  Doing this many times will produce an 

empirical distribution that approximates the 
full joint distribution.!
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Example"

True 

False True True 

TFTT 
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Benefits and problems of simple sampling"

•  Works well for an empty network!
•  Simple!
•  In the limit (many samples), the estimated 

distribution approaches the true posterior!
•  But in nearly all cases, we have evidence, 

rather than an empty network!
•  What can we do?!
•  Throw out cases that donʼt match the 

evidence!
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Rejection sampling"

•  Sample the network as before...!
•  But discard samples that donʼt correspond 

with the evidence.!
•  Similar to real-world estimation procedures, 

but the network is the stand-in for the world 
(much cheaper and easier).!

•  However, hopelessly expensive for large 
networks where P(e) is small.!
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Likelihood weighting"

•  Do simple sampling as before...!
•  But weight the likelihood of each sample 

based on the evidence!
•  Donʼt need to know details…!
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MCMC: Markov Chain Monte Carlo"

•  The “state” of the system is the current 
assignment of all variables!

•  Algorithm!
•  Initialize all variables randomly!
•  Generate next state by sampling one variable 

given its Markov blanket!
•  Sample each variable in turn, keeping other 

evidence fixed.!
•  Variable selection can be sequential or 

random!
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MCMC Problems"

•  Difficult to tell if it has converged!
•  Multiple parameters (e.g., burn-in period)!
•  Can be wasteful if the Markov blanket is large 

because probabilities donʼt change much!
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Specifically (but not limited to)…"

•  Be able to write down probabilistic statements 
asserted by a Bayes net.!

•  Be able to draw a Bayes net from a verbal 
description: cf. problem 14.1, p. 558!

•  Be able to compute prob of query given 
evidence and a Bayes net!
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What you donʼt need to know for the exam"

•  Variable elimination algorithm (14.4.2)!
•  Clustering algorithms (14.4.4)!
•  Likelihood weighting!
•  Why Gibbs sampling works!
•  Secs. 14.6, 14.7!
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Problem 14.14"

Which of the following are asserted by the network?!
P(B,I,M) = P(B)P(I)P(M)!
P(J|G) = P(J|G,I)!
P(M|G,B,I) = P(M|G,B,I,J)!

 
 

X 
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Problem 14.14 contd."

Calculate P(b,i,–m,g,j)!
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Problem 14.14 contd."

What is the prob that someone goes to jail given that 
they broke the law, have been indicted, and face a 
politically motivated prosecutor?!
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Problem 14.4 contd."



78 

Problem 14.4 contd."

€ 

P(J = t B = t,I = t,M = t) = P( j b,i,m) = P( j,b,i,m) /P(b,i,m) =

             α P( j,g,b,i,m) = α P(b)P(m)P(i b,m)
g
∑

g
∑ P(gb,i,m)P( j g) =

             α 1×1×1× P(gb,i,m)P( j g) =
g
∑

             α P(gb,i,m)P( j g) + P(¬gb,i,m)P( j¬g)( ) =

             α .9 × .9 + .1× 0( ) = α × .81

The long way:!


