
1

CMPSCI 383  
December 6, 2011!

Review I"

2

General Information about the Final"

•  Closed book closed notes!
•  Includes midterm material too!
•  But expect more emphasis on later material!

What you should know!

4

Chapter 6: Constraint Satisfaction Problems"

•  Representations: atomic, factored, structured!
•  Definition of a constraint satisfaction problem:!

•  In CSPs, states are defined by assignments of
values to a set of variables X1...Xn. Each variable
Xi has a domain Di of possible values.!

•  States are evaluated based on their consistency
with a set of constraints C1...Cm over the values of
the variables.!

•  A goal state is a complete assignment to all
variables that satisfies all the constraints.!

5

Example: Map coloring"

•  Variables —  
WA, NT, Q, NSW, V, SA, T!

•  Domains — Di = {red,green,blue}!
•  Constraints — adjacent regions must have different colors.!

•  E.g. WA ≠ NT (if the language allows this)!
•  E.g. ((WA,NT), [(red,green),(red,blue),(green,red),…])!

Allowable
combinations of

variables!

6

Example: Map coloring"

•  Solutions are complete and consistent assignments:  
every variable assigned, all assignments legal, e.g.:!
!{WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}!

7

Types of Constraints"

•  Unary constraint: concerns only a single value;
e.g., SA ≠ green!

•  Binary constraint: concerns the relative values
of two variables!

•  Global constraint: concerns an arbitrary
number of variables, e.g., Alldiff!

8

Constraint graph"

9

Local Consistency"

•  Node Consistency: Xi is node-consistent if every value in the
domain Di satisfies all of Xiʼs unary constraints.!
•  A network is node-consistent if every variable is node-

consistent!
•  Arc Consistency: Xi is arc-consistent with respect to Xj if for

every value in the domain Di there is some value in Dj that
satisfies the binary constraint on arc (Xi,Xj)!
•  A network is arc-consistent if every variable is arc-consistent with

every other variable!

10

Arc Consistency (slightly different from the book)"

11

Naive Search Formulation"

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

  Initial state: the empty assignment { }
  Successor function: assign a value to an unassigned variable that

does not conflict with current assignment
 fail if no legal assignments

  Goal test: the current assignment is complete

1.  This is the same for all CSPs
2.  Every solution appears at depth n with n variables

 use depth-first search
3.  Path is irrelevant, so can also use complete-state formulation
4.  b = (n - k)d at depth k, hence n! · dn leaves (d is domain size)

12

Backtracking Search"

  Variable assignments are commutative, i.e.,
[WA = red then NT = green] same as [NT = green then WA = red]

  Only need to consider assignments to a single variable at each node
 b = d and there are dn leaves

  Depth-first search for CSPs with single-variable assignments is
called backtracking search

  Backtracking search is the basic uninformed algorithm for CSPs

13

Simple backtracking search"

•  Depth-first search!
•  Choose values for one variable at a time !
•  Backtrack when a variable has no legal

values left to assign.!
•  If search is uninformed, then general

performance is relatively poor!

14

Improving backtracking efficiency"

•  Approaches!
•  Minimum remaining values heuristic (MRV)!

•  Select the most constrained variable  
(the variable with the smallest number  
of remaining values)!

•  Degree heuristic!
•  Select the variable that is involved in the largest number

of constraints with other unassigned variables: The most
constraining variable.!

•  Least-constraining value heuristic!
•  Given a variable, choose the least constraining value —

the value that leaves the maximum flexibility for
subsequent variable assignments.!

15

Combining Search with Inference"

•  Forward checking!
•  Precomputing information needed by MRV!
•  Early stopping!

•  Constraint propagation!
•  Arc consistency (2-consistency)!

16

Forward checking"

•  Can we detect inevitable failure early?!
•  And avoid it later?!

•  Yes — track remaining legal values for unassigned
variables!

•  Terminate search when any variable has no legal
values.!

17

Forward checking"

•  Assign {WA=red}!
•  Effects on other variables connected by constraints

with WA!
•  NT can no longer be red!
•  SA can no longer be red!

18

Forward checking"

•  Assign {Q=green}!
•  Effects on other variables connected by constraints

with WA!
•  NT can no longer be green!
•  NSW can no longer be green!
•  SA can no longer be green!

19

Forward checking"

•  If V is assigned blue!
•  Effects on other variables connected to WA!

•  SA is empty!
•  NSW can no longer be blue!

•  FC has detected a partial assignment that is
inconsistent with the constraints.!

20

Forward checking"

•  Solving CSPs with combination of heuristics plus forward checking is
more efficient than either approach alone.!

•  FC checking propagates information from assigned to unassigned
variables but does not provide detection for all failures.!
•  NT and SA cannot be blue!!

•  Makes each current variable assignment arc consistent, but does not
look far enough ahead to detect all inconsistencies (as AC-3 would)!

21

Arc consistency"

•  X → Y is consistent iff!
! !for every value x of X there is some allowed y!

•  SA → NSW is consistent iff!
! !SA=blue and NSW=red!

22

Arc consistency"

•  X → Y is consistent iff!
! !for every value x of X there is some allowed y!

•  NSW → SA is consistent iff!
! !NSW=red and SA=blue!
! !NSW=blue and SA=???!

Arc can be made consistent by removing blue from NSW!

23

Arc consistency"

•  Arc can be made consistent by removing blue from NSW!
•  Recheck neighbours!

•  Remove red from V!

24

Arc consistency"

•  Arc can be made consistent by removing blue from NSW!
•  Recheck neighbours!

•  Remove red from V!
•  Arc consistency detects failure earlier than forward checking!
•  Can be run as a preprocessor or after each assignment.!

•  Repeated until no inconsistency remains!

25

Local search for csp"

•  Do we need the path
to the solution or
only the solution
itself?!

•  Can we apply local
search methods?!
•  Hillclimbing!
•  Simulated annealing!
•  Genetic algorithms!

•  Whatʼs a state?!

26

Min-conflicts heuristic for local search"

•  To enable local search!
•  allow states with unsatisfied constraints!
•  operators reassign variable values!

•  Variable selection: randomly select any conflicted
variable!

•  Value selection by min-conflicts heuristic!
•  choose value that violates the fewest constraints!
•  i.e., hill-climb with h(n) = total number of violated constraints!

27

Example: 4-Queens"

•  States: 4 queens in 4 columns (44 = 256 states)!
•  Actions: move queen in column!
•  Goal test: no attacks; h(n) = 0!
•  Evaluation: h(n) = number of attacks!

•  Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability  
(e.g., n = 10,000,000). Average of 50 steps for n = 1M.!

28

Exploiting the structure of CSPs"

•  Decompose into  
independent problems!

•  Tree-structured CSPs can  
be solved in linear time!

•  Reduce problems to  
tree-structured CSPs!
•  Cycle cutset conditioning —  

Remove nodes to create trees!
•  Tree decomposition —  

Decompose problem into a  
tree-structured set of subproblems!

29

Cycle cutset conditioning"

•  Want to create a tree!
•  What is a tree? !
•  Why do we want to create one?!
•  Tree-structured CSPs solvable in linear time!

•  Create a tree by deleting nodes !
•  How can you delete nodes in CSPs?!
•  Set value and restrict domains!

•  Does this always work well? !
•  No, what can we do about that?!
•  Step through possible settings!

•  Whatʼs the payoff?!
•  Big efficiency gains!

30

Tree decomposition"

•  Again, want to create a tree!
•  Whatʼs another way of creating  

a tree?!
•  Merging nodes!

•  Donʼt need to memorize the following:!
•  Rules for doing this:!

•  Every variable in ≥1 subproblems!
•  All connected variable pairs, and assoc.  

constraints, in ≥1 subproblems!
•  If a variable appears in 2 subproblems, 

it must appear in all subproblems on the  
path connecting the two subproblems!

•  Now, how can we solve this new problem?!

31

Things you should know about…"

•  Basic form of a CSP!
•  Be able to formulate a

problem as a CSP!
•  Types of constraints!
•  Consistent assignment!
•  Complete assignment!
•  Constraint graph!
•  Constraint propagation!
•  Backtracking search for CSPs!
•  Heuristics to improve

backtracking search!
•  MRV!
•  Degree heuristic!
•  Least-constraining value!

•  Interleaving search and
inference!
•  Forward checking!
•  Arc consistency!

•  Local search!
•  Complete state formulation!
•  Min-conflicts heuristic!

•  Using problem structure!
•  Decomposing into

independent subproblems!
•  Turn into a tree structured

problem!
•  Basic knowledge of:!

•  Cutset conditioning!
•  Tree decomposition!

32

What you donʼt need to know for the exam"

•  Continuous domains!
•  Bounds propagation!
•  Bounds consistent!
•  MAC!
•  Details of Intelligent

backtracking!
•  Constraint weighting!
•  Directed arc

consistency!

•  Value symmetry!
•  Symmetry-breaking

constraint!
•  Details of cycle

cutset conditioning!
•  Details of tree

decomposition!

33

Chapter 13: Quantifying Uncertainty"

•  Sources of uncertainty!
•  MEU principle!
•  Basics of probability theory!

•  Sample point/atomic event/possible world!
•  Random variables!
•  Joint and conditional distributions!
•  Independence: absolute and conditional!
•  Bayes Rule!

34

Conditional probability"

•  Definition of conditional probability:!
P(a | b) = P(a ∧ b) / P(b) if P(b) > 0!

•  Product rule gives an alternative formulation:!
P(a ∧ b) = P(a | b) P(b) = P(b | a) P(a)!

•  Chain rule is derived by successive application of product rule:!

P(X1, …,Xn) != P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)!
 != P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)!
 != …!
 != πi= 1 P(Xi | X1, … ,Xi-1)!

n

35

Independence"

A and B independent (absolute, marginal) iff!
P(A |B) = P(A) or P(B |A) = P(B) or P(A, B) = P(A) P(B)!

A and B conditionally independent given C iff!
P(A |B,C) = P(A |C) or P(B |A,C) = P(B |C) !
or P(A, B |C) = P(A |C) P(B |C)!

36

Bayes Rule"

•  Product rule P(a∧b) = P(a | b) P(b) = P(b | a) P(a)!

!⇒ Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)!

•  or in distribution form !
" "P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y)!

•  Useful for assessing diagnostic probability from
causal probability:!
•  P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)!
•  E.g., let M be meningitis, S be stiff neck:!

P(m|s) = P(s|m) P(m) / P(s) = 0.8 × 0.0001 / 0.1 = 0.0008!

•  Note: posterior probability of meningitis still very small!!

37

Specifically (but not limited to) ----"

•  Be able to compute various probabilities, and
probability distributions, from the full joint dist.
(cf. problem 13.8 p. 507)!

•  Applying Bayes rule!
•  E.g., diagnosis: p(disease | symptoms) cf.

problem 13.15 p. 508!
•  Equivalent statements for conditional

independence: cf. problem 13.17, p. 508!

38

What you donʼt need to know for the exam"

•  Wumpus world!

39

Chapter 14: Probabilistic Reasoning"

•  Bayesian networks!
•  Exact Inference in Bayesian networks!
•  Approximate Inference in Bayesian networks!

40

Bayesian networks"

•  A simple, graphical notation for conditional
independence assertions and hence for compact
specification of joint distributions!

•  Syntax:!
•  a set of nodes, one per variable!
•  a directed, acyclic graph (link ≈ "directly influences")!
•  a conditional distribution for each node given its parents:!

P (Xi | Parents (Xi))!

•  In the simplest case, conditional distribution
represented as a conditional probability table (CPT)
giving the distribution over Xi for each combination of
parent values!

41

Example"

•  Topology of network encodes conditional
independence assertions:!

•  Weather is independent of the other variables!
•  Toothache and Catch are conditionally independent

given Cavity!

42

Example: Home security"

43

Benefits: Compactness"

•  A CPT for Boolean Xi with  
k Boolean parents has  
2k rows for the combinations  
of parent values!

•  Each row requires  
one number p for Xi = true  
(the number for Xi = false is just 1-p)!

•  If each variable has no more than k parents, the
complete network requires O(n · 2k) numbers!

•  i.e., grows linearly with n, vs. O(2n) for the  
full joint distribution!

•  For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers  
(vs. 25-1 = 31)!

44

Semantics"

•  The full joint distribution is defined  
as the product of the local conditional
distributions:!

" "P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))!

•  Example  
P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)!
!= P(j|a) P(m|a) P(a|¬b,¬e) P(¬b) P(¬e)!

n

45

Conditional Independence"

Node X is conditionally
independent of its non-
descendants given its
parents.!

46

Conditional Independence"

Node X is conditionally
independent of all other
nodes in the network given
its “Markov blanket” (its
parents, children, and their
parents).!

47

Alarm

JohnCalls MaryCalls

Conditional independence"

•  Are JohnCalls and MaryCalls independent?!
•  No, they are not completely independent!

•  If the value of Alarm is known, are JohnCalls and
MaryCalls independent?!
•  Yes, for each known value of A, J and M are independent!

Alarm

48

Conditional independence"

•  Are Burglary and Earthquake cond. independent?!
•  Yes, nodes are conditionally independent of their non-

descendents given their parents!
•  Are they completely independent?!

•  No, one can ʻexplain awayʼ the other if Alarm is known.!

Burglary Earthquake

Alarm Alarm

Earthquake

49

Constructing Bayesian networks"

•  1. Choose an ordering of variables X1, … ,Xn!
•  2. For i = 1 to n!

•  add Xi to the network!
•  select parents from X1, … ,Xi-1 such that!

!P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)!

This choice of parents guarantees:!

P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1) (chain rule)!
! ! != πi =1P (Xi | Parents(Xi)) (by constr.)!n

n

50

•  Suppose we choose the ordering M, J, A, B, E!

Example"

51

Summary"

•  Bayesian network:!
•  Directed acyclic graph whose nodes correspond to

r.v.s; each note has a conditional distribution for its
values given its parents.!

•  Provides a concise way to represent conditional
independence relations!

•  Specifies the full joint distribution!
•  Often exponentially smaller than explicit

representation of the joint distribution!

52

What you donʼt need to know for the exam"

•  Noisy-OR, noisy-MAX, leak node!
•  Bayes nets with continuous variables!

53

Inference in Bayesian networks"

•  Exact!
•  Inference with joint probability distributions!
•  Exact inference in Bayesian networks!
•  Inference by enumeration!
•  Complexity of exact inference!

•  Approximate!
•  Inference by stochastic simulation!
•  Simple sampling!
•  Rejection sampling!
•  Markov chain Monte Carlo (MCMC)!

54

Inference terminology"

•  Conditional probability table: data structure that lists
probabilities of a variable given one or more other
variables.!

•  Joint distribution:  
distribution that is specified by a Bayesian network!

•  Inference: produces the probability distribution of one
or more variables given one or more other variables.!

55

Types of nodes in inference"

Burglary Earthquake

Alarm

JohnCalls MaryCalls

Evidence (or “observed”) variables

56

Types of nodes in inference"

Burglary Earthquake

Alarm

JohnCalls MaryCalls

Query variables!

57

Types of nodes in inference"

Burglary Earthquake

Alarm

JohnCalls MaryCalls

Hidden variables

58

Simple inferences"

Burglary Earthquake

Alarm

JohnCalls MaryCalls

59

Simple inferences"

Burglary Earthquake

Alarm

JohnCalls MaryCalls

60

Simple inferences"

Burglary Earthquake

Alarm

JohnCalls MaryCalls

61

More difficult inferences"

Burglary Earthquake

Alarm

JohnCalls MaryCalls

62

P(B|j,m) = <0.284, 0.716>

Inference by enumeration"

63

Why approximate inference?"

•  Inference in singly connected networks  
is linear!!

•  ...but many networks are not singly connected!
•  Inference in multiply connected networks is

exponential, even when the number of
parents/node is bounded!

•  May be willing to trade some small error for
more tractable inference!

64

Stochastic simulation"

•  Core idea!
•  Draw samples from a sampling distribution defined  

by the network!
•  Compute an approximate posterior probability  

in a way that converges to the true probability!
•  Methods!

•  Simple sampling from an empty network!
•  Rejection sampling — reject samples that donʼt agree with

the evidence!
•  Likelihood weighting — weight samples based on evidence!
•  Markov chain Monte Carlo — sample from a stochastic

process whose stationary distribution is the true posterior!

65

Simple sampling"

•  Given an empty network...!
•  And beginning with nodes without parents...!
•  We can sample from conditional distributions

and instantiate all nodes.!
•  This will produce one element of the joint

distribution.!
•  Doing this many times will produce an

empirical distribution that approximates the
full joint distribution.!

66

Example"

True

False True True

TFTT

67

Benefits and problems of simple sampling"

•  Works well for an empty network!
•  Simple!
•  In the limit (many samples), the estimated

distribution approaches the true posterior!
•  But in nearly all cases, we have evidence,

rather than an empty network!
•  What can we do?!
•  Throw out cases that donʼt match the

evidence!

68

Rejection sampling"

•  Sample the network as before...!
•  But discard samples that donʼt correspond

with the evidence.!
•  Similar to real-world estimation procedures,

but the network is the stand-in for the world
(much cheaper and easier).!

•  However, hopelessly expensive for large
networks where P(e) is small.!

69

Likelihood weighting"

•  Do simple sampling as before...!
•  But weight the likelihood of each sample

based on the evidence!
•  Donʼt need to know details…!

70

MCMC: Markov Chain Monte Carlo"

•  The “state” of the system is the current
assignment of all variables!

•  Algorithm!
•  Initialize all variables randomly!
•  Generate next state by sampling one variable

given its Markov blanket!
•  Sample each variable in turn, keeping other

evidence fixed.!
•  Variable selection can be sequential or

random!

71

MCMC Problems"

•  Difficult to tell if it has converged!
•  Multiple parameters (e.g., burn-in period)!
•  Can be wasteful if the Markov blanket is large

because probabilities donʼt change much!

72

Specifically (but not limited to)…"

•  Be able to write down probabilistic statements
asserted by a Bayes net.!

•  Be able to draw a Bayes net from a verbal
description: cf. problem 14.1, p. 558!

•  Be able to compute prob of query given
evidence and a Bayes net!

73

What you donʼt need to know for the exam"

•  Variable elimination algorithm (14.4.2)!
•  Clustering algorithms (14.4.4)!
•  Likelihood weighting!
•  Why Gibbs sampling works!
•  Secs. 14.6, 14.7!

74

Problem 14.14"

Which of the following are asserted by the network?!
P(B,I,M) = P(B)P(I)P(M)!
P(J|G) = P(J|G,I)!
P(M|G,B,I) = P(M|G,B,I,J)!

X

75

Problem 14.14 contd."

Calculate P(b,i,–m,g,j)!

76

Problem 14.14 contd."

What is the prob that someone goes to jail given that
they broke the law, have been indicted, and face a
politically motivated prosecutor?!

77

Problem 14.4 contd."

78

Problem 14.4 contd."

€

P(J = t B = t,I = t,M = t) = P(j b,i,m) = P(j,b,i,m) /P(b,i,m) =

 α P(j,g,b,i,m) = α P(b)P(m)P(i b,m)
g
∑

g
∑ P(gb,i,m)P(j g) =

 α 1×1×1× P(gb,i,m)P(j g) =
g
∑

 α P(gb,i,m)P(j g) + P(¬gb,i,m)P(j¬g)() =

 α .9 × .9 + .1× 0() = α × .81

The long way:!

