
1

CMPSCI 383  
Dec 1, 2011!

More Reinforcement
Learning"

2

Todayʼs lecture"

•  Quick review of passive RL!
•  More on TD learning!
•  TD learning of action values!

•  Active RL!

•  Key fact!
•  Exploration!
•  SARSA!
•  Q-Learning!
•  TD and Dopamine!
•  Generalization: function approximation!
•  Eligibility traces!

3

Check this out"

http://www.technologyreview.com/computing/39156/!

MIT's Technology Review has an in-depth interview with
Peter Norvig, Google'sDirector of Research, and Eric
Horvitz, a Distinguished Scientist at MicrosoftResearch
about their optimism for the futureof AI.!

4

Passive RL: review"

•  Agent has fixed policy and learns utilities!
•  Barto: “not really RL: it is prediction”!

•  Direct utility estimation!
•  Collect samples of quantity to be estimated!
•  Average them!
•  Or use an incremental method….!
•  Does not take advantage of relationship between utilities of different states!

•  Adaptive Dynamic Programming (ADP)!
•  Learn a model!
•  Do DP on it!
•  Can interleave these (modified policy iteration)!

•  Temporal Difference (TD) Learning!
•  Use an error to make estimates adhere to constraint!
•  Does not need a model!

5

A Bit of Terminology"

•  Utilities (U) = Values (V)!
•  Return: discounted sum of rewards!

•  Return from a state: the discounted sum of
rewards accumulated after visiting that state!

•  Same as “reward-to-go”!
•  Utility (or value) of a state is the expected return

from that state!

6

Direct Utility Estimation (incremental)"

T T T T T

T T T T T

V(st)← V(st) +α Rt − V (st)[]
where Rt is the actual return following state st .

st

T T

T T

T T T

T T T

7

Simplest TD Method"

T T T T T

T T T T T

st+1
rt+1

st

V(st)← V(st) +α rt+1 + γ V (st+1) − V(st)[]

T T T T T

T T T T T

8

cf. Dynamic Programming"

V(st)← Eπ rt+1 +γ V(st){ }

T

T T T

st

rt+1
st+1

T

T T

T

T T

T

T

T

9

More on TD Learning"

•  TD methods do not require a model of the
environment, only experience!

•  You can learn before knowing the final outcome!
•  Less memory!
•  Less peak computation!
•  You can learn without the final outcome from

incomplete sequences!

10

You are the Predictor"

Suppose you observe the following 8 episodes:

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

V(A)?
V(B)?

11

You are the Predictor"

A B

r = 1

100%

75%

25%

r = 0

r = 0
V(A)?

12
12

You are the Predictor"

•  The prediction that best matches the training data is
V(A)=0!
•  This minimizes the mean-square-error on the training set!
•  This is what direct utility estimation gets!

•  If we consider the sequentiality of the problem, then
we would set V(A)=.75!
•  This is correct for the maximum likelihood estimate of a

Markov model generating the data !
•  i.e, if we do a best fit Markov model, and assume it is

exactly correct, and then compute what it predicts (how?)!
•  This is called the certainty-equivalence estimate!
•  This is what TD gets!

13

TD learning of Action-Values (for a given policy)"

€

Qπ (s,a) = Utility of doing action a in state s	

i.e.: Total amount of reward expected !
over the future if you do action a in !
state s and thereafter follow policy π	

€

Uπ (s) =max
a
Qπ (s,a)

The utility of a state is the utility of doing the best action
from that state:!

14

TD Learning of Action-Values (for a given policy)"

st+2,at+2st+1,at+1

rt+2rt+1st st+1st ,at
st+2

Estimate Qπ for the current behavior policy π.

After every transition from a nonterminal state st , do this :

Q st , at()←Q st , at() + α rt+1 +γ Q st+1,at+1() −Q st ,at()[]
If st+1 is terminal, then Q(st+1, at+1) = 0.

15

Active RL"

•  Passive agent follows a fixed policy,
estimates expected utilities!

•  Active agent needs to decide on what actions
to perform to maximize expected utility!

Passive agent: faces a prediction problem!
Active agent: faces a control problem!

16

Edward L. Thorndike (1874-1949)"

puzzle box!

Learning by “Trial-and-Error”!

17

Key Fact"

•  A greedy agent is one that always takes the
action that maximizes its current utility
estimates!

•  If its utility estimates are correct, i.e., it has
learned the true utility function (or optimal
value function), then a greedy agent acts
optimally.!

18

Value-Guided Optimal Control"

Munos & Moore “Variable resolution discretization for high-accuracy
solutions of optimal control problems”, IJCAI 99.

Get to the top of the hill!
as quickly as possible
(roughly)!

Predicted minimum time to
goal (negated)!

19

Active RL Agents"

Experience

Build

Utility
Function

Policy

Select
U	

Q	

π 	

Predictions

. . .

Actions

20

Interaction of policy and utility"

Policy
Utility

Function

policy
evaluation

policy
improvement

utility
learning

“greedification”

π	

 U, Q	

21

Exploration"

A greedy agent very rarely learns to act optimally!

22

Exploration/Exploitation Dilemma"

•  Exploitation: act according to your current
estimates (exploit current “knowledge”).!

•  Exploration: do something else!!

•  You canʼt do both at the same time.!
•  How do you handle the tradeoff?!

23

Whatʼs the best exploration policy?"

Assume you've learned a utility function, "
How do you select actions?"

Greedy Action Selection:"
"Always select the action that looks best:"

ε-Greedy Action Selection:!
Be greedy most of the time!
Occasionally take a random action!

Other Methods:"
"Boltzmann distribution, keep track of
confidence intervals, etc."

€

π(s) = argmax
a
Q(s,a)

The simplest
possible thing!!

Current estimate!

24

ε-Greedy Action Selection"

•  Greedy action selection:!

•  ε-Greedy:!
at = at

* = argmax
a
Qt(a)

at* with probability 1 − ε
random action with probability ε{at =

. . . the simplest way to try to balance exploration and exploitation!

25

More on Exploration"

•  GLIE schemes: “Greedy in the Limit of Infinite
Exploration”!
•  Simplest maybe: ε-Greedy with decreasing ε	

•  Optimistic initial estimates, fading out with

increasing visitations	

•  “Exploration Bonuses”!
•  Approximations to optimal exploration…see

box on p. 841!

26

Sarsa"

Turn passive learning of action values into an active
method by always updating the policy to be greedy
with respect to the current estimate: !

27

Q-Learning"

One - step Q - learning :

Q st , at()←Q st , at() + α rt+1 +γ max
a
Q st+1, a() −Q st , at()[]

28

Cliffwalking"

Reward
per

epsiode

!""

#$

$"

%$

" !"" %"" &"" '"" $""

Episodes

Sarsa

Q-learning

S G

r = !""

T h e C l i f f

r =(! safe path

optimal path

ε-greedy, ε = 0.1!

29

On-Policy vs. Off-Policy"

•  Behavior policy: the policy the agent is using.!
•  Estimation policy: the policy the agent is

evaluating!

•  On-Policy methods: !
•  Estimation policy = Behavior policy!

•  Off-Policy methods: !
•  Estimation policy = Behavior policy !

SARSA!

Q-learning!

30

Actor-Critic Methods"

•  Explicit representation of
policy as well as value
function!

•  Minimal computation to
select actions!

•  Can learn an explicit
stochastic policy!

•  Can put constraints on
policies!

•  Appealing as psychological
and neural models !

Policy

TD
error

Environment

Value
Function

reward

state action

Actor

Critic

31

Dopamine and TD Error"

W. Schultz et al. !
Universite de Fribourg

32

Generalization in RL"

•  So far only considered lookup table
representations of utility functions.!

•  What if the state set is huge? e.g.
Backgammon!

•  Use function approximation methods!

33

Features or Basis Functions"

•  E.g., linear function approximation: represent
U or Q as a linear combination of features (or
basis functions :!

€

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

€

f1,K fn

€

n << number of states

34

Gradient ascent TD learning"

€

θ i←θ i +α R(s) + γ max ˆ Q θ (ʹ′ s
ʹ′ a

, ʹ′ a) − ˆ Q θ (s,a)
⎡

⎣ ⎢
⎤

⎦ ⎥
∂ ˆ Q θ (s,a)
∂θ i

€

θ i←θ i +α R(s) + γ ˆ U θ (ʹ′ s) − ˆ U θ (s)[]∂
ˆ U θ (s)
∂θ i

For state-value functions:!

For action-value functions:!

35

For Linear Function Approximation"

€

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

€

∂ ˆ U θ (s)
∂θ i

= ?

36

For Linear Function Approximation"

€

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

€

∂ ˆ U θ (s)
∂θ i

= f i(s)

37

“Coarse Coding”"

i

ci

i

ci+1ci-1

ci

i+1

ci+1

t
expanded

representation,
many features

original
representation

approximation

38

Tile Coding"

•  Binary feature for each tile!
•  Number of features present

at any one time is constant!
•  Binary features means

weighted sum easy to
compute!

•  Easy to compute indices of
the freatures present!

39

Radial Basis Functions (RBFs)"

€

fi(s) = exp −
s − ci

2

2σ i
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e.g., Gaussians!

40

Mountain-Car Task"

41

Nonlinear Function Approx."

Start with a random network!
Play very many games against self!
Learn a value function using TD with backpropagation from this

simulated experience!

This produces arguably the best player in the world"

Action selection"
by 2–3 ply search"

Value

TD error
Vt+1 ! Vt

Tesauro, 1992–1995"TD-Gammon"

42

Eligibility traces: Sarsa(λ) Example"

•  With one trial, the agent has much more information about how
to get to the goal !
•  not necessarily the best way!

•  Can considerably accelerate learning!

43

Summary"

•  Quick review of passive RL!
•  More on TD learning!
•  TD learning of action values!

•  Active RL!

•  Key fact!
•  Exploration!
•  SARSA!
•  Q-Learning!
•  TD and Dopamine!
•  Generalization: function approximation!
•  Eligibility traces!

44

Next Class"

•  Review for the final!

