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CMPSCI 383  
Dec 1, 2011!

More Reinforcement 
Learning"
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Todayʼs lecture"

•  Quick review of passive RL!
•  More on TD learning!
•  TD learning of action values!

•  Active RL!

•  Key fact!
•  Exploration!
•  SARSA!
•  Q-Learning!
•  TD and Dopamine!
•  Generalization: function approximation!
•  Eligibility traces!
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Check this out"

http://www.technologyreview.com/computing/39156/!

MIT's Technology Review has an in-depth interview with 
Peter Norvig, Google'sDirector of Research, and Eric 
Horvitz, a Distinguished Scientist at MicrosoftResearch 
about their optimism for the futureof AI.!
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Passive RL: review"

•  Agent has fixed policy and learns utilities!
•  Barto: “not really RL: it is prediction”!

•  Direct utility estimation!
•  Collect samples of quantity to be estimated!
•  Average them!
•  Or use an incremental method….!
•  Does not take advantage of relationship between utilities of different states!

•  Adaptive Dynamic Programming (ADP)!
•  Learn a model!
•  Do DP on it!
•  Can interleave these (modified policy iteration)!

•  Temporal Difference (TD) Learning!
•  Use an error to make estimates adhere to constraint!
•  Does not need a model!
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A Bit of Terminology"

•  Utilities (U) = Values (V)!
•  Return: discounted sum of rewards!

•  Return from a state: the discounted sum of 
rewards accumulated after visiting that state!

•  Same as “reward-to-go”!
•  Utility (or value) of a state is the expected return 

from that state!
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Direct Utility Estimation (incremental)"

T T T T T 

T T T T T 

V(st )← V(st) +α Rt − V (st )[ ]
where Rt  is the actual return following state st .
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Simplest TD Method"

T T T T T 

T T T T T 

st+1
rt+1

st

V(st )← V(st) +α rt+1 + γ V (st+1 ) − V(st )[ ]

T T T T T 

T T T T T 
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cf. Dynamic Programming"

V(st )← Eπ rt+1 +γ V(st ){ }
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More on TD Learning"

•  TD methods do not require a model of the 
environment, only experience!

•  You can learn before knowing the final outcome!
•  Less memory!
•  Less peak computation!
•  You can learn without the final outcome from 

incomplete sequences!
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You are the Predictor"

Suppose you observe the following 8 episodes: 

A, 0, B, 0 
B, 1 
B, 1 
B, 1 
B, 1 
B, 1 
B, 1 
B, 0 

V(A)?
V(B)?
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You are the Predictor"

A B

r = 1

100%

75%

25%

r = 0

r = 0
V(A)?
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You are the Predictor"

•  The prediction that best matches the training data is 
V(A)=0!
•  This minimizes the mean-square-error on the training set!
•  This is what direct utility estimation gets!

•  If we consider the sequentiality of the problem, then 
we would set V(A)=.75!
•  This is correct for the maximum likelihood estimate of a 

Markov model generating the data !
•  i.e, if we do a best fit Markov model, and assume it is 

exactly correct, and then compute what it predicts (how?)!
•  This is called the certainty-equivalence estimate!
•  This is what TD gets!
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TD learning of Action-Values (for a given policy)"

€ 

Qπ (s,a) = Utility of doing action a in state s	


i.e.: Total amount of reward expected !
over the future if you do action a in !
state s  and thereafter follow policy π	



€ 

Uπ (s) =max
a
Qπ (s,a)

The utility of a state is the utility of doing the best action 
from that state:!
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TD Learning of Action-Values (for a given policy)"

st+2,at+2st+1,at+1

rt+2rt+1st st+1st ,at
st+2

Estimate Qπ  for the current behavior policy π.

After every transition from a nonterminal state st ,  do this :

Q st , at( )←Q st , at( ) + α rt+1 +γ Q st+1,at+1( ) −Q st ,at( )[ ]
If st+1 is terminal,  then Q(st+1, at+1 ) = 0.
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Active RL"

•  Passive agent follows a fixed policy, 
estimates expected utilities!

•  Active agent needs to decide on what actions 
to perform to maximize expected utility!

Passive agent: faces a prediction problem!
Active agent: faces a control problem!
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Edward L. Thorndike (1874-1949)"

puzzle box!

Learning by “Trial-and-Error”!
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Key Fact"

•  A greedy agent is one that always takes the 
action that maximizes its current utility 
estimates!

•  If its utility estimates are correct, i.e., it has 
learned the true utility function (or optimal 
value function), then a greedy agent acts 
optimally.!



18 

Value-Guided Optimal Control"

Munos & Moore “Variable resolution discretization for high-accuracy 
solutions of optimal control problems”, IJCAI 99. 

Get to the top of the hill!
as quickly as possible 
(roughly)!

Predicted minimum time to 
goal (negated)!
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Active RL Agents"

Experience 
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Utility 
Function 

Policy 
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Interaction of policy and utility"

Policy 
Utility 

Function 

policy 
evaluation 

policy 
improvement 

utility  
learning 

“greedification” 

π	

 U, Q	
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Exploration"

A greedy agent very rarely learns to act optimally!
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Exploration/Exploitation Dilemma"

•  Exploitation:  act according to your current 
estimates (exploit current “knowledge”).!

•  Exploration: do something else!!

•  You canʼt do both at the same time.!
•  How do you handle the tradeoff?!
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Whatʼs the best exploration policy?"

Assume you've learned a utility function, "
How do you select actions?"

Greedy Action Selection:"
"Always select the action that looks best:"

ε-Greedy Action Selection:!
Be greedy most of the time!
Occasionally take a random action!

Other Methods:"
"Boltzmann distribution, keep track of 
confidence intervals,  etc."

€ 

π(s) = argmax
a
Q(s,a)

The simplest 
possible thing!!

Current estimate!
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ε-Greedy Action Selection"

•  Greedy action selection:!

•  ε-Greedy:!
at = at

* = argmax
a
Qt(a)

at*  with probability 1 − ε
random action with probability ε{at =

. . . the simplest way to try to balance exploration and exploitation!
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More on Exploration"

•  GLIE schemes: “Greedy in the Limit of Infinite 
Exploration”!
•  Simplest maybe: ε-Greedy with decreasing ε	


•  Optimistic initial estimates, fading out with 

increasing visitations	


•  “Exploration Bonuses”!
•  Approximations to optimal exploration…see 

box on p. 841!
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Sarsa"

Turn passive learning of action values into an active 
method by always updating the policy to be greedy 
with respect to the current estimate: !
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Q-Learning"

One - step Q - learning :

Q st , at( )←Q st , at( ) + α rt+1 +γ max
a
Q st+1, a( ) −Q st , at( )[ ]
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Cliffwalking"

Reward
per

epsiode

!""

#$

$"
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Episodes

Sarsa

Q-learning

S G

r = !""

T h e  C l i f f

r =( ! safe path

optimal path

ε-greedy, ε = 0.1!
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On-Policy vs. Off-Policy"

•  Behavior policy: the policy the agent is using.!
•  Estimation policy: the policy the agent is 

evaluating!

•  On-Policy methods:  !
•  Estimation policy = Behavior policy!

•  Off-Policy methods: !
•  Estimation policy = Behavior policy !

SARSA!

Q-learning!
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Actor-Critic Methods"

•  Explicit representation of 
policy as well as value 
function!

•  Minimal computation to 
select actions!

•  Can learn an explicit 
stochastic policy!

•  Can put constraints on 
policies!

•  Appealing as psychological 
and neural models !

Policy

TD
error

Environment

Value
Function

reward

state action

Actor

Critic
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Dopamine and TD Error"

W. Schultz et al. !
Universite de Fribourg 
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Generalization in RL"

•  So far only considered lookup table 
representations of utility functions.!

•  What if the state set is huge? e.g. 
Backgammon!

•  Use function approximation methods!
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Features or Basis Functions"

•  E.g., linear function approximation: represent 
U or Q as a linear combination of features (or 
basis functions              :!

  

€ 

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

  

€ 

f1,K fn

€ 

n <<  number of states
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Gradient ascent TD learning"

€ 

θ i←θ i +α R(s) + γ max ˆ Q θ ( ʹ′ s 
ʹ′ a 

, ʹ′ a ) − ˆ Q θ (s,a)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
∂ ˆ Q θ (s,a)
∂θ i

€ 

θ i←θ i +α R(s) + γ ˆ U θ ( ʹ′ s ) − ˆ U θ (s)[ ]∂
ˆ U θ (s)
∂θ i

For state-value functions:!

For action-value functions:!



35 

For Linear Function Approximation"

  

€ 

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

€ 

∂ ˆ U θ (s)
∂θ i

= ?
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For Linear Function Approximation"

  

€ 

ˆ U θ (s) = θ1 f1(s) +θ2 f2(s) +L+θn fn (s)

€ 

∂ ˆ U θ (s)
∂θ i

= f i(s)
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“Coarse Coding”"

i

ci

i

ci+1ci-1

ci

i+1

ci+1

t
expanded

representation,
many features

original
representation

approximation
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Tile Coding"

•  Binary feature for each tile!
•  Number of features present 

at any one time is constant!
•  Binary features means 

weighted sum easy to 
compute!

•  Easy to compute indices of 
the freatures present!
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Radial Basis Functions (RBFs)"

€ 

fi(s) = exp −
s − ci

2

2σ i
2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

e.g., Gaussians!
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Mountain-Car Task"
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Nonlinear Function Approx."

Start with a random network!
Play very many games against self!
Learn a value function using TD with backpropagation from this 

simulated experience!

This produces arguably the best player in the world"

Action selection"
by 2–3 ply search"

Value 

TD error 
Vt+1 ! Vt

Tesauro, 1992–1995"TD-Gammon"
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Eligibility traces: Sarsa(λ) Example"

•  With one trial, the agent has much more information about how 
to get to the goal !
•  not necessarily the best way!

•  Can considerably accelerate learning!
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Summary"

•  Quick review of passive RL!
•  More on TD learning!
•  TD learning of action values!

•  Active RL!

•  Key fact!
•  Exploration!
•  SARSA!
•  Q-Learning!
•  TD and Dopamine!
•  Generalization: function approximation!
•  Eligibility traces!
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Next Class"

•  Review for the final!


