
1

CMPSCI 383  
Nov 29, 2011!

Reinforcement Learning"

2

Todayʼs lecture"

•  Review of Chapter 17: Making Complex
Decisions!
•  Sequential decision problems!

•  The motivation and advantages of reinforcement
learning.!

•  Passive learning!

•  Policy evaluation!
•  Direct utility estimation!
•  Adaptive dynamic programming!
•  Temporal Difference (TD) learning!

3

Check this out"

http://www.technologyreview.com/computing/39156/!

MIT's Technology Review has an in-depth interview with
Peter Norvig, Google'sDirector of Research, and Eric
Horvitz, a Distinguished Scientist at MicrosoftResearch
about their optimism for the futureof AI.!

4

A Simple Example"

•  “Gridworld” with 2 Goal states!
•  Actions: Up, Down, Left, Right!
•  Fully observable: Agent knows where it is!

1231234START0.80.10.1(a)(b)–1+ 1

5

Transition Model"

1231234START0.80.10.1(a)(b)–1+ 1

6

Markov Assumption"

1231234START0.80.10.1(a)(b)–1+ 1

7

Agentʼs Utility Function"

•  Performance depends on the entire sequence of
states and actions.!
•  “Environment history”!

•  In each state, the agent receives a reward R(s).!
•  The reward is real-valued. It may be positive or

negative.!
•  Utility of environment history = sum of reward

received.!

8

Reward function"

1231234START0.80.10.1(a)(b)–1+ 1

-­‐.04	
 -­‐.04	
 -­‐.04	

-­‐.04	

-­‐.04	

-­‐.04	

-­‐.04	
 -­‐.04	

9

Decision Rules"

•  Decision rules say what to do in each state.!
•  Often called policies, π.
•  Action for state s is given by π(s).!

10

Our Goal"

•  Find the policy that maximizes the expected
sum of rewards.!

•  Called an optimal policy.!

11

Markov Decision Process (MDP)"

•  M=(S,A,P,R)!
•  S = set of possible states!
•  A = set of possible actions!
•  P(sʼ|s,a) gives transition probabilities!
•  R = reward function!

•  Goal: find an optimal policy, π*.!

12

Finite/Infinite Horizon"

•  Finite horizon: the “game” ends after N steps.!
•  Infinite horizon: the “game” never ends!
•  “With a finite horizon, the optimal action in a

given state could change over time.”!
•  The optimal policy is nonstationary.!

•  With infinite horizon, the optimal policy is
stationary.!

13

Utilities over time"

•  Additive rewards:!

•  Discounted rewards:!

•  Discount factor:!

14

Discounted Rewards"

•  Would you rather have a marshmallow now,
or two in 20 minutes?!

•  Infinite sums!!

15

Utility of States"

•  Given a policy, we can define the utility of a
state:!

16

Policy Evaluation"

•  Finding the utility of states for a given policy.!

•  Solve a system of linear equations:!

•  An instance of a “Bellman Equation”.!€

π

€

π

17

Policy Evaluation"

•  The n linear equations can be solved in O(n3)
with standard linear algebra methods.!

•  If O(n3) is still too much, we can do it
iteratively:!

€

π

€

π

18

Optimal Policy"

•  Optimal policy doesnʼt depend on what state
you start in (for infinite horizon discounted case).!

•  Optimal policy: !
•  True utility of a state:!

€

π*

“optimal value function”!

19

Selecting optimal actions"

•  Given the true U(s) values, how can we select
actions? (Maximum expected utility – MEU)!

20

Utility and Rewards"

•  Utility = long term total reward from s onwards!
•  Reward = short term reward from s!

21

Utility"

123123–1+ 140.6110.8120.6550.7620.9180.7050.6600.868 0.388

22

Value-Guided Optimal Control"

Munos & Moore “Variable resolution discretization for high-accuracy
solutions of optimal control problems”, IJCAI 99.

Get to the top of the hill
as quickly as possible
(roughly)

Predicted minimum
time to goal (negated)

23

Searching for Optimal Policies"

•  Bellman Equation!

•  If we write out the Bellman equation for all n
states, we get n equations, with n unknowns: U(s).!

•  We can solve this system of equations to
determine the Utility of every state.!

24

Value Iteration"

•  The equations are non-linear, so we canʼt use
standard linear algebra methods.!

•  Value iteration: start with random initial values
for each U(s), iteratively update each value to
fit the fight-hand side of the equation:!

25

Value Iteration"

•  The update is applied simultaneously to every
state.!

•  If this update is applied infinitely often, we are
guaranteed to find the true U(s) values.!
•  There is one unique solution!

•  Given the true U(s) values, how can we select
actions? (Maximum expected utility – MEU)!

26

Policy Iteration"

•  Policy iteration interleaves two steps:!
•  Policy evaluation: Given a policy, compute the

utility of each state for that policy!
•  Policy improvement: Calculate a new MEU

policy!
•  Terminate when the policy doesnʼt change

the utilities.!
•  Guaranteed to converge to an optimal

policy!

27

Asynchronous Policy Iteration"

•  We said the utility of every state is updated
simultaneously. This isnʼt necessary.!

•  You can pick and subset of the states and
apply either policy improvement or value
iteration to that subset.!

•  Given certain conditions, this is also
guaranteed to converge to an optimal policy.!

28

Reinforcement Learning"

29

Edward L. Thorndike (1874-1949)"

puzzle box!

Learning by “Trial-and-Error”!

30

“Law of Effect”"

“Of several responses made to the same situation, those
which are accompanied or closely followed by satisfaction to
the animal will, other things being equal, be more firmly
connected with the situation, so that, when it recurs, they will
be more likely to recur; those which are accompanied or
closely followed by discomfort to the animal will, other
things being equal, have their connections with that situation
weakened, so that when it recurs, they will be less likely to
occur.”

Edward Thorndike, 1911

31

RL = Search + Memory"

•  Search: Trial-and-Error, Generate-and-Test,
Variation-and-Selection!

•  Memory: remember what worked best for
each situation and start from there next time!

32

MENACE (Michie, 1961)"

“Matchbox Educable Noughts and Crosses Engine”

x

x

x

x

o

o

o

o

o

x

x

x
x

o

o

o x

x

x
o

o

o x x

x x

x x

x x

o

o

x o

o
x

x

x

x
x

x o

o

o

o

o

o

o

o

o

o

o

x

x

x

o

o

o

o
o

o

o

x

x

x

o
o x

x

x

x

o

o

o

x o

o

o

o

o

o

o

o

o

x

x
x

x

o
o

o

o

o

x

x

x

x

o

o

o

o

o

o

o

o

x

x

x

x

o

o

o

o

o

o

o

x

x

x

x

o

o

o

o
x

x

x

x

o

o

o

o
x

x

33

Supervised learning"

Supervised Learning "
System!Inputs! Outputs!

Training Info = desired (target) outputs!

Error = (target output – actual output)!

34

Reinforcement learning"

RL"
System!

Inputs! Outputs !
(“actions”, “controls”)!

Training Info = evaluations (“rewards”, “penalties”, etc.)!

Objective: get as much reward as possible!

35

Reinforcement learning"

•  Learning what to do—how to map situations
to actions—so as to maximize a numerical
reward signal!

•  Rewards may be provided following each
action, or only when the agent reaches a goal
state.!

•  The “credit assignment problem”.!

36

Why reinforcement learning?"

•  More realistic model of the kind of learning
that animals do.!

•  Supervised learning is sometimes unrealistic:
where will correct examples come from?!

•  Environments change, and so the agent must
adjust its action choices.!

37

Stick to this kind of RL problem here:"

•  Environment is fully observable: agent knows
what state the environment is in!

•  But: agent does not know how the
environment works or what its actions do!

38

Some kinds of RL agents"

•  Utility-based agent: learns utility function on
states and uses it to select actions!
•  Needs an environment model to decide on actions!

•  Q-learning agent: leans and action-utility
functions, or Q-function, giving expected
utility for taking each action in each state.!
•  Does not need an environment model.!

•  Reflex agent: learn a policy without first
learning a state-utility function or a Q-function!

39

Passive versus active learning "

•  A passive learner simply watches the world
going by and tries to learn the utility of being
in various states.!

•  An active learner must also act using the
learned information, and can use its problem
generator to suggest explorations of
unknown portions of the environment.!

40

Passive learning"

Given (but agent doesnʼt know this):"
•  A Markov model of the environment.!
•  States, with probabilistic actions.!
•  Terminal states have rewards/utilities.!

Problem:"
•  Learn expected utility of each state.!

Note: if agent knows how the environment and its
actions work, can solve the relevant Bellman equation
(which would be linear).!

41

Example"

Percepts tell agent:
[State, Reward, Terminal?]

1231234START0.80.10.1(a)(b)–1+ 1

-­‐.04	
 -­‐.04	
 -­‐.04	

-­‐.04	

-­‐.04	

-­‐.04	

-­‐.04	
 -­‐.04	

42

Learning utility functions"

•  A training sequence (or episode) is an
instance of world transitions from an initial
state to a terminal state.!

•  The additive utility assumption: utility of a
sequence is the sum of the rewards over the
states of the sequence.!

•  Under this assumption, the utility of a state is
the expected reward-to-go of that state.!

43

Direct Utility Estimation"

•  For each training sequence, compute the
reward-to-go for each state in the sequence
and update the utilities.!

•  This is just learning the utility function from
examples.!

•  Generates utility estimates that minimize the
mean square error (LMS-update).!

44

Direct Utility Estimation"

T T T TT

T T T T T

U(i)← (1− α)U(i) + α REWARD(training sequence)

state i!

45

Problems with direct utility estimation"

Converges slowly because it ignores the
relationship between neighboring states:!

New
U=?

Old
U=–.8

–1

+1

p=.9
p=.1

46

Key Observation: Temporal Consistency"

•  Utilities of states are not independent!
•  The utility of each state equals its own reward

plus the expected utility of its successor
states: !

€

Ut = rt+1 +γ rt+2 +γ 2rt+3 +γ 3rt+4L

= rt+1 +γ rt+2 +γ rt+3 +γ 2rt+4L()
= rt+1 +γUt+1

€

Uπ (s) = R(s) +γ P(ʹ′ s | s, π (s))
ʹ′ s
∑ Uπ (ʹ′ s)

The key fact:!

47

Adaptive dynamic programming"

•  Learn a model: transition probabilities, reward
function!

•  Do policy evaluation!
•  Solve the Bellman equation either directly or

iteratively (value iteration without the max)!
•  Learn model while doing iterative policy

evaluation:!
•  Update the model of the environment after each

step. Since the model changes only slightly after
each step, policy evaluation will converge quickly.!

48

Adaptive dynamic prog (ADP)"

T T T TT

T T T T T

€

U(i)← R(i) + PijU(j)
j
∑

state i

possible
 states j

R(i)

49

Passive ADP learning curves"

50

Exact utility values for the example"

51

Temporal difference (TD) learning"

Approximate the constraint equations without
solving them for all states.!

Modify U(i) whenever we see a transition from i
to j using the following rule:!

The modification moves U(i) closer to satisfying
the original equation.!

Q. Why does it work?!

U(i)←U(i) +α R(i) +U(j) −U(i)[]

52

TD learning contd."

T T T TT

T T T T T

U(i)← (1− α)U(i) + α R(i) +U(j)[]

state i

state j

R(i)

53

TD learning curves"

54

Next Class"

•  Active Reinforcement Learning!
•  Sec. 21.3!

55

Next Class"

•  Reinforcement Learning!
•  Secs. 21.1 – 21.3!

