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CMPSCI 383  
Nov 29, 2011!

Reinforcement Learning"
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Todayʼs lecture"

•  Review of Chapter 17: Making Complex 
Decisions!
•  Sequential decision problems!

•  The motivation and advantages of reinforcement 
learning.!

•  Passive learning!

•  Policy evaluation!
•  Direct utility estimation!
•  Adaptive dynamic programming!
•  Temporal Difference (TD) learning!
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Check this out"

http://www.technologyreview.com/computing/39156/!

MIT's Technology Review has an in-depth interview with 
Peter Norvig, Google'sDirector of Research, and Eric 
Horvitz, a Distinguished Scientist at MicrosoftResearch 
about their optimism for the futureof AI.!
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A Simple Example"

•  “Gridworld” with 2 Goal states!
•  Actions: Up, Down, Left, Right!
•  Fully observable: Agent knows where it is!

1231234START0.80.10.1(a)(b)–1+ 1
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Transition Model"

1231234START0.80.10.1(a)(b)–1+ 1
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Markov Assumption"

1231234START0.80.10.1(a)(b)–1+ 1
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Agentʼs Utility Function"

•  Performance depends on the entire sequence of 
states and actions.!
•  “Environment history”!

•  In each state, the agent receives a reward R(s).!
•  The reward is real-valued. It may be positive or 

negative.!
•  Utility of environment history = sum of reward 

received.!
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Reward function"

1231234START0.80.10.1(a)(b)–1+ 1
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Decision Rules"

•  Decision rules say what to do in each state.!
•  Often called policies, π. 
•  Action for state s is given by π(s).!
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Our Goal"

•  Find the policy that maximizes the expected 
sum of rewards.!

•  Called an optimal policy.!
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Markov Decision Process (MDP)"

•  M=(S,A,P,R)!
•  S = set of possible states!
•  A = set of possible actions!
•  P(sʼ|s,a) gives transition probabilities!
•  R = reward function!

•  Goal: find an optimal policy, π*.!
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Finite/Infinite Horizon"

•  Finite horizon: the “game” ends after N steps.!
•  Infinite horizon: the “game” never ends!
•  “With a finite horizon, the optimal action in a 

given state could change over time.”!
•  The optimal policy is nonstationary.!

•  With infinite horizon, the optimal policy is 
stationary.!
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Utilities over time"

•  Additive rewards:!

•  Discounted rewards:!

•  Discount factor:!
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Discounted Rewards"

•  Would you rather have a marshmallow now, 
or two in 20 minutes?!

•  Infinite sums!!
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Utility of States"

•  Given a policy, we can define the utility of a 
state:!
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Policy Evaluation"

•  Finding the utility of states for a given policy.!

•  Solve a system of linear equations:!

•  An instance of a “Bellman Equation”.!€ 

π

€ 

π
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Policy Evaluation"

•  The n linear equations can be solved in O(n3) 
with standard linear algebra methods.!

•  If O(n3) is still too much, we can do it 
iteratively:!

€ 

π

€ 

π
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Optimal Policy"

•  Optimal policy doesnʼt depend on what state 
you start in (for infinite horizon discounted case).!

•  Optimal policy: !
•  True utility of a state:!

€ 

π*

“optimal value function”!
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Selecting optimal actions"

•  Given the true U(s) values, how can we select 
actions? (Maximum expected utility – MEU)!
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Utility and Rewards"

•  Utility = long term total reward from s onwards!
•  Reward = short term reward from s!
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Utility"

123123–1+ 140.6110.8120.6550.7620.9180.7050.6600.868 0.388
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Value-Guided Optimal Control"

Munos & Moore “Variable resolution discretization for high-accuracy 
solutions of optimal control problems”, IJCAI 99. 

Get to the top of the hill 
as quickly as possible 
(roughly) 

Predicted minimum 
time to goal (negated) 
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Searching for Optimal Policies"

•  Bellman Equation!

•  If we write out the Bellman equation for all n 
states, we get n equations, with n unknowns: U(s).!

•  We can solve this system of equations to 
determine the Utility of every state.!



24 

Value Iteration"

•  The equations are non-linear, so we canʼt use 
standard linear algebra methods.!

•  Value iteration: start with random initial values 
for each U(s), iteratively update each value to 
fit the fight-hand side of the equation:!
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Value Iteration"

•  The update is applied simultaneously to every 
state.!

•  If this update is applied infinitely often, we are 
guaranteed to find the true U(s) values.!
•  There is one unique solution!

•  Given the true U(s) values, how can we select 
actions? (Maximum expected utility – MEU)!
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Policy Iteration"

•  Policy iteration interleaves two steps:!
•  Policy evaluation: Given a policy, compute the 

utility of each state for that policy!
•  Policy improvement: Calculate a new MEU 

policy!
•  Terminate when the policy doesnʼt change 

the utilities.!
•  Guaranteed to converge to an optimal 

policy!
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Asynchronous Policy Iteration"

•  We said the utility of every state is updated 
simultaneously. This isnʼt necessary.!

•  You can pick and subset of the states and 
apply either policy improvement or value 
iteration to that subset.!

•  Given certain conditions, this is also 
guaranteed to converge to an optimal policy.!
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Reinforcement Learning"
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Edward L. Thorndike (1874-1949)"

puzzle box!

Learning by “Trial-and-Error”!
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“Law of Effect”"

“Of several responses made to the same situation, those 
which are accompanied or closely followed by satisfaction to 
the animal will, other things being equal, be more firmly 
connected with the situation, so that, when it recurs, they will 
be more likely to recur; those which are accompanied or 
closely followed by discomfort to the animal will, other 
things being equal, have their connections with that situation 
weakened, so that when it recurs, they will be less likely to 
occur.” 

Edward Thorndike, 1911 
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RL = Search + Memory"

•   Search: Trial-and-Error, Generate-and-Test, 
Variation-and-Selection!

•   Memory: remember what worked best for 
each situation and start from there next time!
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MENACE  (Michie, 1961)"

“Matchbox Educable Noughts and Crosses Engine” 
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Supervised learning"

Supervised Learning "
System!Inputs! Outputs!

Training Info  =  desired (target) outputs!

Error  =  (target output  –  actual output)!
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Reinforcement learning"

RL"
System!

Inputs! Outputs !
(“actions”, “controls”)!

Training Info  =  evaluations (“rewards”, “penalties”, etc.)!

Objective:  get as much reward as possible!
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Reinforcement learning"

•  Learning what to do—how to map situations 
to actions—so as to maximize a numerical 
reward signal!

•  Rewards may be provided following each 
action, or only when the agent reaches a goal 
state.!

•  The “credit assignment problem”.!
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Why reinforcement learning?"

•  More realistic model of the kind of learning 
that animals do.!

•  Supervised learning is sometimes unrealistic: 
where will correct examples come from?!

•  Environments change, and so the agent must 
adjust its action choices.!
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Stick to this kind of RL problem here:"

•  Environment is fully observable: agent knows 
what state the environment is in!

•  But: agent does not know how the 
environment works or what its actions do!
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Some kinds of RL agents"

•  Utility-based agent: learns utility function on 
states and uses it to select actions!
•  Needs an environment model to decide on actions!

•  Q-learning agent:  leans and action-utility 
functions, or Q-function, giving expected 
utility for taking each action in each state.!
•  Does not need an environment model.!

•  Reflex agent: learn a policy without first 
learning a state-utility function or a Q-function!
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Passive versus active learning "

•  A passive learner simply watches the world 
going by and tries to learn the utility of being 
in various states.!

•  An active learner must also act using the 
learned information, and can use its problem 
generator to suggest explorations of 
unknown portions of the environment.!
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Passive learning"

Given (but agent doesnʼt know this):"
•  A Markov model of the environment.!
•  States, with probabilistic actions.!
•  Terminal states have rewards/utilities.!

Problem:"
•  Learn expected utility of each state.!

Note: if agent knows how the environment and its 
actions work, can solve the relevant Bellman equation 
(which would be linear).!
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Example"

Percepts tell agent: 
[State, Reward, Terminal?] 

1231234START0.80.10.1(a)(b)–1+ 1
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Learning utility functions"

•  A training sequence (or episode) is an 
instance of world transitions from an initial 
state to a terminal state.!

•  The additive utility assumption: utility of a 
sequence is the sum of the rewards over the 
states of the sequence.!

•  Under this assumption, the utility of a state is 
the expected reward-to-go of that state.!
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Direct Utility Estimation"

•  For each training sequence, compute the 
reward-to-go for each state in the  sequence 
and update the utilities.!

•  This is just learning the utility function from 
examples.!

•  Generates utility estimates that minimize the 
mean square error (LMS-update).!
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Direct Utility Estimation"

T T T TT

T T T T T

U(i)← (1− α )U(i) + α REWARD(training sequence)

state i!
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Problems with direct utility estimation"

Converges slowly because it ignores the 
relationship between neighboring states:!

New 
U=? 

Old 
U=–.8 

–1 

+1 

p=.9 
p=.1 
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Key Observation: Temporal Consistency"

•  Utilities of states are not independent!
•  The utility of each state equals its own reward 

plus the expected utility of its successor 
states: !

  

€ 

Ut = rt+1 +γ rt+2 +γ 2rt+3 +γ 3rt+4L

= rt+1 +γ rt+2 +γ rt+3 +γ 2rt+4L( )
= rt+1 +γUt+1

€ 

Uπ (s) = R(s) +γ P( ʹ′ s | s, π (s))
ʹ′ s 
∑ Uπ ( ʹ′ s )

The key fact:!
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Adaptive dynamic programming"

•  Learn a model: transition probabilities, reward 
function!

•  Do policy evaluation!
•  Solve the Bellman equation either directly or 

iteratively (value iteration without the max)!
•  Learn model while doing iterative policy 

evaluation:!
•  Update the model of the environment after each 

step.  Since the model changes only slightly after 
each step, policy evaluation will converge quickly.!
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Adaptive dynamic prog (ADP)"

T T T TT

T T T T T

€ 

U(i)← R(i) + PijU( j)
j
∑

state i 

possible 
 states j 

R(i) 
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Passive ADP learning curves"
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Exact utility values for the example"
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Temporal difference (TD) learning"

Approximate the constraint equations without 
solving them for all states.!

Modify U(i) whenever we see a transition from i 
to j using the following rule:!

The modification moves U(i) closer to satisfying 
the original equation.!

Q.  Why does it work?!

U(i)←U(i) +α R(i) +U( j) −U(i)[ ]
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TD learning contd."

T T T TT

T T T T T

U(i)← (1− α )U(i) + α R(i) +U( j)[ ]

state i 

state j 

R(i) 



53 

TD learning curves"
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Next Class"

•  Active Reinforcement Learning!
•  Sec. 21.3!
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Next Class"

•  Reinforcement Learning!
•  Secs. 21.1 – 21.3!


