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Today’s topics

e Full Bayesian Learning
« MAP approximation
e ML approximation

ML parameter learning in Bayes nets
* Naive Bayes Model
e Linear Gaussian Model

e Bayesian parameter learning
o Beta family of distributions
e Conjugate families

e Latent variables
e Expectation Maximization (EM) algorithm



Full Bayesian Learning

View learning as Bayesian updating of a probability distribution
over the hypothesis space
H is the hypothesis variable, values /.y, hs, .. ., prior P(H)

jth observation d; gives the outcome of random variable D;
training data d=d,...,dy

Given the data so far, each hypothesis has a posterior probability:
P(h;|d) = aP(d|h;)P(h;)

where P(d|h;) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:
P(X|d) =2; P(X|d, h;)P(h;|d) = 22; P(X|h;) P(h;|d)

No need to pick one best-guess hypothesis!



Example

Suppose there are five kinds of bags of candies:
10% are hi: 100% cherry candies
20% are ho: 75% cherry candies + 25% lime candies
40% are hs: 50% cherry candies + 50% lime candies
20% are hy: 25% cherry candies + 75% lime candies
10% are hs: 100% lime candies
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Then we observe candies drawn from some bag: ® oo oo oo oo

What kind of bag 1s it? What flavour will the next candy be?



Posterior Probabilities of the Hypotheses
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Prediction Probability
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MAP approximation

Summing over the hypothesis space i1s often intractable

(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)
Maximum a posteriori (MAP) learning: choose hy;ap maximizing P(h;|d)
l.e., maximize P(d|h;)P(h;) orlog P(d|h;) + log P(h;)

Log terms can be viewed as (negative of)

bits to encode data given hypothesis + bits to encode hypothesis
This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, P(d|h;) is 1 if consistent, 0 otherwise
= MAP = simplest consistent hypothesis (cf. science)



ML approximation

For large data sets, prior becomes irrelevant
Maximum likelihood (ML) learning: choose hyy, maximizing P(d |h;)

l.e., simply get the best fit to the data; identical to MAP for uniform prior
(which is reasonable if all hypotheses are of the same complexity)

ML is the “standard” (non-Bayesian) statistical learning method



ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction ¢ of cherry candies?
) ) ) P(F=cherry)
Any @ is possible: continuum of hypotheses /4 a)

6 is a parameter for this simple (binomial) family of models

Suppose we unwrap /N candies, ¢ cherries and £ =N — ¢ limes
These are i.i.d. (independent, identically distributed) observations, so

P(dlhe) = 11 P(d;|he) = 6%+ (1 - )"
j=
Maximize this w.r.t. —which is easier for the log-likelihood:

N
L(d|he) = log P(d|hg) = ¥ log P(d;|hg) = clogf + Llog(1 — )
J:

dL(d|hy) c 4 c c
do 6 1-—6 c+¢ N

Seems sensible, but causes problems with 0 counts!




Multiple parameters

Red /green wrapper depends probabilistically on flavor: P(F=gf"y>

Likelihood for, e.g., cherry candy in green wrapper:

P(F = cherry, W = green|hyg, 4,) P(W=red 1F)

= P(F = cherry|hog,o,)P(W = green|F = cherry, hog,,)| |*|_©:

= 0-(1—6y)

N candies, . red-wrapped cherry candies, etc.:

P(dl|hgg,9,) = (1 —0)"- 071 — 61)% - 65 (1 — 6,)*

L = [clog 6+ flog(1—0)]
+ [r.log6; + g.log(1 — 6;)]
+ [relog 6, + grlog(1 — 65)]
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Multiple parameters contd.

Derivatives of L contain only the relevant parameter:
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With complete data, parameters can be learned separately
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Naive Bayes Model

class label

Attributes:
independent given C

P(CIx,,x,.....x,) = a PO)] |P(x, 10)

Naive Bayes Classifier:

Cyp = argmax ¢, P(C 1 X, ,% 5,0 0,x,) = argmaxaP(C)HP(xi 1C)
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Naive Bayes contd.

Cyp = argmax ¢, P(C 1 X, ;%550 0,x,) = argmaxaP(C)HP(xi 1C)

Or, taking logs and dropping a :

Cyp = ArgMaX o l0g P(C 1%, ;... x,) = logP(O)] [P(x, 10)

=logP(c) + Y log P(x, |C)

- a linear classifier
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Naive Bayes vs. decision tree
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Figure 20.3  FILES: . The learning curve for naive Bayes learning applied to the restaurant problem
from Chapter 18; the learning curve for decision-tree learning is shown for comparison.
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Example: linear Gaussian model
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= minimizing E = Z ( — (61 + 6y))?
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That i1s, minimizing the sum of squared errors gives the ML solution
for a linear fit assuming Gaussian noise of fixed variance



Summary so far

Full Bayesian learning gives best possible predictions but is intractable
MAP learning balances complexity with accuracy on training data
Maximum likelihood assumes uniform prior, OK for large data sets

1. Choose a parameterized family of models to describe the data
requires substantial insight and sometimes new models

2. Write down the likelihood of the data as a function of the parameters
may require summing over hidden variables, i.e., inference

3. Write down the derivative of the log likelihood w.r.t. each parameter

4. Find the parameter values such that the derivatives are zero
may be hard/impossible; modern optimization techniques help
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Full Bayesian parameter learning

e ML learning is simple but has some problems:

e e.g., after seeing one sample, the ML estimate is
%100 that sample
e Bayesian approach starts with a hypothesis
prior, which is revised using Bayes rule as
more data comes in.

e E.g., consider one unknown parameter

We start with a prob. distribution over values of 0 :
e.g., the prior probability that a bag has a fraction 0
of cherries.
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Beta family of distributions

beta[a,b](H ) = Ha_l (1 -0 )b_l a and b are called hyperparameters

25 9 6 -
[551 7, £y
2 1 5 : [30.10)
[2.2] 4
& 15 | = i 5
I o N < X
> L] o
< 1 = <
/ N 2 L
05 1 7 \ 1 4
0 ¥ . . . . . 0
0 02 04 06 08 1 0
Parameter 6 Parameter 0
(a) (b)
Figure 20.5  FILES: . Examples of the beta[a, b| distribution for different values of [a, b].
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Conjugate families of distributions

 E.g., the Beta family
Closed under Bayesian updates
PO | D, =cherry) = a P(D, = cherry |0)P(0)

=o' 06 beta[a,b](@) —a'l- Ha-1(1 B H)b—l
= OC’H“(I — Q)b_l — bez‘a[a + 1,b](9)
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Nonparametric density estimation

k-nearest-neighbors

Density
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Figure 20.7 FILES: . (a) A 3D plot of the mixture of Gaussians from Figure 20.11(a). (b) A
128-point sample of points from the mixture, together with two query points (small squares) and their
10-nearest-neighborhoods (medium and large circles).
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Nonparametric density estimation contd.

Figure 20.8 FILES: . Density estimation using k-nearest-neighbors, applied to the data in Fig-
ure 20.7(b), for k= 3, 10, and 40 respectively. k = 3 1s too spiky, 40 1s too smooth, and 10 is just about
right. The best value for k can be chosen by cross-validation.
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Nonparametric density estimation contd.

kernel density estimation

Figure 209 FILES: . Kernel density estimation for the data in Figure 20.7(b), using Gaussian
kernels with w =0.02, 0.07, and 0.20 respectively. w = 0.07 1s about right.
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Latent variables

Figure 20.10  FILES: figures/313-heart-disease.eps (Tue Nov 3 16:22:09 2009). (a) A simple di-
agnostic network for heart disease, which 1s assumed to be a hidden variable. Each variable has three
possible values and 1s labeled with the number of independent parameters in its conditional distribu-
tion; the total number i1s 78. (b) The equivalent network with HeartDisease removed. Note that the
symptom variables are no longer conditionally independent given their parents. This network requires
708 parameters.
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Expectation Maximization (EM) Algorithm

Clustering with mixture of Gaussians
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Figure 20.11 FILES: . (a) A Gaussian mixture model with three components; the weights (left-

to-right) are 0.2, 0.3, and 0.5. (b) 500 data points sampled from the model in (a). (c¢) The model
reconstructed by EM from the data in (b).
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Summary

e Full Bayesian Learning
« MAP approximation
e ML approximation

ML parameter learning in Bayes nets
* Naive Bayes Model
e Linear Gaussian Model

 Bayesian parameter learning
o Beta family of distributions
e Conjugate families

e Latent variables
o Very briefly: Expectation Maximization (EM) algorithm
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Next Class

* Reinforcement Learning
e Secs.21.1-21.3
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