Artificial Neural Networks and Nonparametric Methods

CMPSCI 383 Nov 17, 2011

Today's lecture

- How the brain works (!)
- Artificial neural networks
- Perceptrons
- Multilayer feed-forward networks
 - Error backpropagation algorithm
- Nonparametric methods
 - Nearest neighbor models
 - Nonparametric regression

How the brain works

- Remains a great mystery of science!
- Basic component: the neuron.

The brain and the digital computer

	Computer	Human Brain
Computational units Storage units Cycle time Bandwidth Neuron updates/sec	1 CPU, 10 ⁵ gates 10 ⁹ bits RAM, 10 ¹⁰ bits disk 10 ⁻⁸ sec 10 ⁹ bits/sec 10 ⁵	10^{11} neurons 10^{11} neurons, 10^{14} synapses 10^{-3} sec 10^{14} bits/sec 10^{14}
Figure 19.2 A crude comparison of the raw computational resources available to computers (<i>circa</i> 1994) and brains.		

Even though a computer is a million times faster in raw switching speed, the brain ends up being a billion times faster at what it does.

"Massive parallelism"

- Also called: neural networks, connectionist systems, neuromorphic systems, parallel distributed processing (PDP) systems, etc.
- Networks of relatively simple processing units, which are very abstract models of neurons; the network does the computation more than the units.

Neuron-like units

Figure 18.19 FILES: figures/neuron-unit.eps (Wed Nov 4 11:23:13 2009). A simple mathematical model for a neuron. The unit's output activation is $a_j = g(\sum_{i=0}^{n} w_{i,j}a_i)$, where a_i is the output activation of unit *i* and $w_{i,j}$ is the weight on the link from unit *i* to this unit.

Typical activation functions

Figure 19.5 Three different activation functions for units.

$$\operatorname{step}_{t}(x) = \begin{cases} 1, & \text{if } x \ge t \\ 0, & \text{if } x < t \end{cases} \quad \operatorname{sign}(x) = \begin{cases} +1, & \text{if } x \ge 0 \\ -1, & \text{if } x < 0 \end{cases} \quad \operatorname{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

A useful trick

$$a_{j} = step_{t}(\sum_{i=1}^{n} w_{i,j}a_{i}) = step_{0}(\sum_{i=0}^{n} w_{i,j}a_{i})$$

where
$$W_{0,j} = t$$

 $a_0 = -1$

So we can always assume a threshold of 0 if we add an extra input always equal to -1 **McCulloch and Pitts, 1943**: showed that whatever you can do with logic networks, you can do with networks of abstract neuron-like units.

Units with step function activation functions

- Feed-forward vs. recurrent networks
- Multi-layer feed-forward networks

Input nodes Hidden nodes

Network structures

Figure 18.20 FILES: figures/neural-net.eps (Wed Nov 4 11:08:22 2009). (a) A perceptron network with two inputs and two output units. (b) A neural network with two inputs, one hidden layer of two units, and one output unit. Not shown are the dummy inputs and their associated weights.

Perceptrons

• Name given in 1950s to layered feed-forward networks.

What can perceptrons represent

• Only linearly separable functions

In three dimensions

(b) Weights and threshold

Perceptrons vs. Decision trees

Majority function with 11 inputs

WillWait from restaurant example

Multilayer feed-forward nets

Representing complicated functions

A single logistic unit

Back-propagation learning

To update weights from hidden units to output unit

$$Err_{k} = k^{th} \text{ component of } \mathbf{y} - \mathbf{h}_{\mathbf{w}}$$
$$w_{j,k} \leftarrow w_{j,k} + \alpha \times a_{j} \times Err_{k} \times g'(in_{k})$$

letting $\Delta_k = Err_k g'(in_k)$ this becomes $w_{j,k} \leftarrow w_{j,k} + \alpha \times a_j \times \Delta_k$

To update weights from input units to hidden units

$$\Delta_{j} = g'(in_{j}) \sum_{k} w_{j,k} \Delta_{k}$$
$$w_{i,j} \leftarrow w_{i,j} + \alpha \times a_{i} \times \Delta_{j}$$
$$(i) \xrightarrow{w_{i,j}} (j) \xrightarrow{w_{j,k}} k$$
input unit hidden unit output unit

Back-prop as gradient descent

Multilayer net vs. decision tree

Figure 18.25 FILES: . (a) Training curve showing the gradual reduction in error as weights are modified over several epochs, for a given set of examples in the restaurant domain. (b) Comparative learning curves showing that decision-tree learning does slightly better on the restaurant problem than back-propagation in a multilayer network.

Comments on network learning

- **Expressiveness**: given enough hidden units, can represent any function (almost).
- **Computational efficiency**: generally slow to train, but fast to use once trained.
- **Generalization**: good success in a number of real-world problems.
- Sensitivity to noise: very tolerant to noise in data

- **Transparency**: not good!
- **Prior knowledge**: not particularly easy to insert prior knowledge, although possible.

Nonparametric Methods

- Parametric model: a learning model that has a set of parameters of fixed size
 - e.g., linear models, neural networks (of fixed size)
- Nonparametric model: a learning model whose set of parameters is not bounded
 - Parameter set grows with the number of training examples
 - e.g., just save the examples in a lookup table

Nearest Neighbor Models

- K-nearest neighbors algorithm:
 - Save all the training examples
 - For classification: find k nearest neighbors of the input and take a vote (make k odd)
 - For regression: take mean or median of the k nearest neighbors, or do a local regression on them
- How do you measure distance?
- How do you efficiently find the k nearest neighbors?

Distance Measures

Minkowski distance

$$L^{p}(\mathbf{x}_{j}, \mathbf{x}_{q}) = \left(\sum_{i} \left| x_{j,i} - x_{q,i} \right|^{p} \right)^{1/p}$$

p = 1 Manhattan distance

$$p = 2$$
 Euclidean distance

Hamming distance for Boolean attribute values

k-nearest neighbor for k=1 and k=5

Figure 18.26 FILES: figures/earthquake-nn1.eps (Tue Nov 3 16:22:38 2009) figures/earthquake-nn5.eps (Tue Nov 3 16:22:38 2009). (a) A k-nearest-neighbor model showing the extent of the explosion class for the data in Figure 18.14, with k = 1. Overfitting is apparent. (b) With k = 5, the overfitting problem goes away for this data set.

Curse of Dimensionality

In high dimensions, the nearest points tend to be far away.

Figure 18.27 FILES: The curse of dimensionality: (a) The length of the average neighborhood for 10-nearest-neighbors in a unit hypercube with 1,000,000 points, as a function of the number of dimensions. (b) The proportion of points that fall within a thin shell consisting of the outer 1% of the hypercube, as a function of the number of dimensions. Sampled from 10,000 randomly distributed points.

Nonparametric Regression

Locally Weighted Regression

Figure 18.29 FILES: A quadratic kernel, $\mathcal{K}(d) = \max(0, 1 - (2|x|/k)^2)$, with kernel width k = 10, centered on the query point x = 0.

Summary

- How the brain works (!)
- Artificial neural networks
- Perceptrons
- Multilayer feed-forward networks
 - Error backpropagation algorithm
- Nonparametric methods
 - Nearest neighbor models
 - Nonparametric regression

Next Class

- Learning Probabilistic Models
- Secs. 20.1 20.4