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CMPSCI 383  
Nov 15, 2011!

Regression and Classification"
with Linear Models"
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Todayʼs topics"
•  Learning from Examples: brief review!
•  Univariate Linear Regression!

•  Batch gradient descent!
•  Stochastic gradient descent!

•  Multivariate Linear Regression!
•  Regularization!

•  Linear Classifiers!
•  Perceptron learning rule!

•  Logistic Regression!
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Learning from Examples (supervised learning)"



4 

Learning from Examples (supervised learning)"



5 

Learning from Examples (supervised learning)"



6 

Learning from Examples (supervised learning)"



7 

Learning from Examples (supervised learning)"



8 

Learning from Examples (supervised learning)"
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Important issues"

•  Generalization !
•  Overfitting!
•  Cross-validation!

•  Holdout cross validation!
•  K-fold cross validation!
•  Leave-one-out cross-validation!

•  Model selection!
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Recall Notation"

  

€ 

(x1,y1), (x2,y2),K (xN ,yN ) training set!

Where each     was generated by !
an unknown function!

€ 

y j

€ 

y = f (x)

Discover a function     that best 
approximates the true function!

€ 

h

€ 

f

hypothesis!
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Loss Functions"

€ 

L(x,y, ˆ y ) = Utility(result of using y given input x)
                   −Utility(result of using ˆ y  given input x)€ 

Suppose the true prediction for input x is f (x) = y
but the hypothesis gives h(x) = ˆ y 

€ 

Simplified version :  L(y, ˆ y )

€ 

Absolute value loss :  L1(y, ˆ y ) = y − ˆ y 

Squared error loss :    L2(y, ˆ y ) = y − ˆ y ( )2

0/1 loss :                     L0 /1(y, ˆ y ) = 0 if y = ˆ y ,  else 1

Generalization loss: expected loss over all possible examples!
Empirical loss: average loss over available examples!



12 

Univariate Linear Regression"
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Univariate Linear Regression contd."

€ 

w = w0,w1[ ]
hw (x) = w1x + w0

weight vector!

Find weight vector that minimizes empirical loss, 
e.g., L2:!

€ 

Loss(hw ) = L2(y j , hw (x j )) =
j=1

N

∑ (y j − hw (x j ))
2 =

j=1

N

∑ (y j − (w1x j + w0))
2

j=1

N

∑

€ 

w* = argminw Loss(hw )

i.e., find      such that!

€ 

w*
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Weight Space"
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Finding w*"

€ 

∂
∂w0

(y j − (w1x j + w0))2 = 0  and  
j=1

N

∑ ∂
∂w1

(y j − (w1x j + w0))2 = 0  
j=1

N

∑

Find weights such that:!
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Gradient Descent"

€ 

wi← wi −α
∂
∂wi

Loss(w)

step size or !
learning rate!
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Gradient Descent contd."

€ 

w0← w0 +α(y − hw (x))   and   w1← w1 +α(y − hw (x))x

For one training example         :!

€ 

(x,y)

€ 

w0← w0 +α (y j − hw (x j ))
j
∑    and   w1← w1 +α (y j − hw (x j ))

j
∑ x j

For N training examples:!

batch gradient descent!

stochastic gradient descent: take a step for 
one training example at a time!
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The Multivariate case"

  

€ 

hsw (x j ) = w0 + w1x j,1 +L+ wnx j ,n = w0 + wix j,i
i
∑

Augmented vectors: add a feature to each     by tacking on a 1:!

€ 

x j,0 =1

€ 

hsw (x j ) = w⋅ x j = wTx j = wix j,i
i
∑

Then:!

€ 

wi← wi +α (y j − hw (x j ))
j
∑ x j,i

And batch gradient descent update becomes:!

€ 

x
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The Multivariate case contd."

Or, solving analytically:!

€ 

yLet      be the vector of outputs for the training examples!

€ 

X data matrix: each row is an input vector!

€ 

y = XwSolving this for      :!

€ 

w*

€ 

w* = XTX( )−1XTy

pseudo inverse!
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Regularization"

€ 

Cost(h) = EmpLoss(h) + λComplexity(h)

Complexity(hw ) = Lq (w) = wi
i
∑

q



21 

L1 vs. L2 Regularization"



22 

Linear Classification: hard thresholds"
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Linear Classification: hard thresholds contd."

•  Decision Boundary:!
•  In linear case: linear separator, a hyperplane!

•  Linearly separable: !
•  data is linearly separable if the classes can be 

separated by a linear separator!
•  Classification hypothesis:!

€ 

hw (x) = Threshold(w⋅ x)  where  Threshold(z) =1 if z ≥ 0 and 0 otherwise
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Perceptron Learning Rule"

€ 

For a single sample (x,y) :

wi← wi +α y − hw (x)( )xi

€ 

• If the output is correct, i.e.,  y =hw (x),  then the weights don't change
• If y =1 but hw (x) = 0, then wi is increased when xi is positive and decreased when xi is negative.
• If y = 0 but hw (x) =1, then wi is decreased when xi is positive and increased when xi is negative.

Perceptron Convergence Theorem: For any data set 
thatʼs linearly separable and any training procedure 
that continues to present each training example, the 
learning rule is guaranteed to find a solution in a finite 
number of steps.!
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Perceptron Performance"



26 

Linear Classification with Logistic Regression"

An important function!!
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Logistic Regression"

€ 

hw (x) = Logistic(w⋅ x) =
1

1+ e−w⋅x

€ 

€ 

For a single sample (x,y) and L2 loss function :

wi← wi +α y − hw (x)( )hw (x) 1− hw (x)( )xi

derivative of logistic function!
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Logistic Regression Performance"

separable case!
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Summary"
•  Learning from Examples: brief review!

•  Loss functions!
•  Generalization!
•  Overfitting!
•  Cross-validation!
•  Regularization!

•  Univariate Linear Regression!
•  Batch gradient descent!
•  Stochastic gradient descent!

•  Multivariate Linear Regression!
•  Regularization!

•  Linear Classifiers!
•  Perceptron learning rule!

•  Logistic Regression!
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Next Class"

•  Artificial Neural Networks, Nonparametric 
Models, & Support Vector Machines!

•  Secs. 18.7 – 18.9!


