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Today’s topics

e Learning from Examples: brief review

Univariate Linear Regression
e Batch gradient descent
o Stochastic gradient descent

Multivariate Linear Regression
» Regularization

Linear Classifiers
» Perceptron learning rule

Logistic Regression



Learning from Examples (supervised learning)

Simplest form: learn a function from examples (tabula rasa)

f 1s the target function

O|0|X
An example is a pair z, f(z), e.g., X . +1
X

Problem: find a(n) hypothesis /
such that h =~ f
given a training set of examples

(This is a highly simplified model of real learning:
— Ignores prior knowledge
— Assumes a deterministic, observable “environment”
— Assumes examples are given
— Assumes that the agent wants to learn f—why?)



Learning from Examples (supervised learning)

Construct/adjust / to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:
J(x)
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Important issues

e (Generalization
» Overfitting

e Cross-validation
 Holdout cross validation
o K-fold cross validation
e |eave-one-out cross-validation

e Model selection
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Recall Notation

(X,9,),(X5,¥,),... (Xy,yy)  training set

Where each y ;was generated by
an unknown function y = f(x)

Discover a function & that best

approximates the true%'xu%

hypothesis
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Loss Functions

Suppose the true prediction for input x 1s f(X) = y

but the hypothesis gives h(x) = y

L(x,y,y) = Utility(result of using y given input X)
— Utility(result of using y given input x)

Simplified version: L(y,y)
Absolute value loss: L(y,9) =y =3

Squared error loss:  L,(y,y) = (y - &)2
0/1 loss: L,,(y,y)=0ify =y, else 1

Generalization loss: expected loss over all possible examples
Empirical loss: average loss over available examples
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Univariate Linear Regression

House price in $1000

500 1000 1500 2000 2500 3000 3500

House size in square feet
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Univariate Linear Regression contd.

W = [wo,wl] weight vector

h,(x)=wx+w,

Find weight vector that minimizes empirical loss,
e.g., La:

Loss(h,) = 3, L,(y . b, (x ) =E(yj ~hy(x)? =E(yf — (WX + W)’

l.e., find w*such that

w =arg min  Loss(h,,)
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Weight Space

W)
N

X\X dclld.ll;
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Finding w*

Find weights such that:

7

N 0’) N

0 j=1 L
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Gradient Descent

J
w.<— w, —a—— Loss(w)

M

step size or
learning rate




Gradient Descent contd.

For one training example (x,y):

wys— wy+oa(y—-h,(x)) and w<w +a(y-h_(x))x

For N training examples:

W< W, + az(yj —h,(x;)) and w < w + ocE(yj —h,(x;))x;
j j

batch gradient descent

stochastic gradient descent: take a step for
one training example at a time
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The Multivariate case

hSW(Xj) =Wot WX+t WX, =W +Ewixj,i
i

Augmented vectors: add a feature to each X by tacking on a 1: Xio= 1

Then:

h,(X)=W X, =W X, = Ewixj,l.
And batch gradient descent update becomes:

W< W, + aE(yj — hw(xj))xj,l.
j
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The Multivariate case contd.

Or, solving analytically:
Let Y be the vector of outputs for the training examples

X data matrix: each row is an input vector

Solving this for w*: 'y = Xw

wh = (X"X) X'y

pseudo inverse
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Regularization

Cost(h) = EmpLoss(h) + AComplexity(h)

Complexity(h,) = L (W) = E

q

w;
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L1 vs. L2 Regularization
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Figure 18.14  FILES: figures/diamond.eps (Wed Nov 4 14:45:53 2009). Why [ regularization
tends to produce a sparse model. (a) With L regularization (box), the minimal achievable loss (con-
centric contours) often occurs on an axis, meaning a weight of zero. (b) With Lo regularization (circle),
the minimal loss 1s likely to occur anywhere on the circle, giving no preference to zero weights.
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Linear Classification: hard thresholds
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Figure 18.15  FILES: . (a) Plot of two seismic data parameters, body wave magnitude =1 and surface

wave magnitude x2, for earthquakes (white circles) and nuclear explosions (black circles) occurring
between 1982 and 1990 in Asia and the Middle East (7). Also shown is a decision boundary between
the classes. (b) The same domain with more data points. The earthquakes and explosions are no longer

linearly separable.
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Linear Classification: hard thresholds contd.

Decision Boundary:
e In linear case: linear separator, a hyperplane

Linearly separable:

e data is linearly separable if the classes can be
separated by a linear separator

Classification hypothesis:

h, (x) = Threshold(w- xX) where Threshold(z) =11f z=0 and O otherwise

1
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Perceptron Learning Rule

For a single sample (Xx,y):

W< w, + (x(y -h, (X))xl.

* If the output is correct, i.e., y =h_ (X), then the weights don't change
* Ify =1buth,(x) =0, then w, is increased when x, is positive and decreased when x, is negative.

* If y =0 but i (x) =1, then w, is decreased when x, is positive and increased when x, is negative.

Perceptron Convergence Theorem: For any data set
that’s linearly separable and any training procedure
that continues to present each training example, the
learning rule is guaranteed to find a solution in a finite
number of steps.
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Perceptron Performance

Proportion correct
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Figure 18.16 FILES: . (a) Plot of total training-set accuracy vs. number of iterations through the
training set for the perceptron learning rule, given the earthquake/explosion data in Figure 18.14(a).
(b) The same plot for the noisy, non-separable data in Figure 18.14(b); note the change in scale of the
x-axis. (c) The same plot as in (b), with a learning rate schedule «(¢) =1000/(1000 + t). o5



Linear Classification with Logistic Regression
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Figure 18.17  FILES: . (a) The hard threshold function Threshold(z) with 0/1 output. Note that
the function is nondifferentiable at z = 0. (b) The logistic function, Logistic(z) = H% , also known
as the sigmoid function. (c) Plot of a logistic regression hypothesis hw Logistic(w-x) for the data

shown in Figure 18.14(b).

An important function!
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Logistic Regression

1
l+e

h, (X) = Logistic(W- X) =

-W-X

For a single sample (x,y) and L, loss function :

wy— w,+aly —h, (X))h, (x)(1-h, (x))x,
I |

\

derivative of logistic function
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Squared error per example

Logistic Regression Performance
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Figure 18.18 FILES: . Repeat of the experiments in Figure 18.15 using logistic regression and
squared error. The plot in (a) covers 5000 iterations rather than 1000, while (b) and (c) use the same
scale.
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Summary

e Learning from Examples: brief review
e Loss functions
* Generalization
» Overfitting
o Cross-validation
e Regularization
Univariate Linear Regression
» Batch gradient descent
o Stochastic gradient descent
Multivariate Linear Regression
* Regularization
Linear Classifiers
» Perceptron learning rule

Logistic Regression
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Next Class

 Artificial Neural Networks, Nonparametric
Models, & Support Vector Machines

e Secs. 18.7—-18.9

30



