CMPSCI 383: Artificial Intelligence
Lecture 17, November 8, 2011
Making Complex Decisions

Disclaimer

* I’'m not covering everything in 17.1-17.3

Sequential Decision Problems

 Chapter 16 was “one shot”
— Where should the airport be placed?
— Should | accept a certain bet?

 What about problems where an agent must make
a sequence of decisions?

e We assume that a decision will influence the
future decisions that must be made.
— Robot control (helicopter / balancing)
— Elevator scheduling

— Anesthesia administration, DRAM schedulers,
Backgammon...

Black Sheep Wall

Chess Poker
Checkers Blackjack
Tag Marco Polo
Fully Observable Partially Observable

For now, we assume the problem is fully
observable.

A Simple Example

e “Gridworld” with 2 Goal states
e Actions: Up, Down, Left, Right
* Fully observable: Agent knows where it is

3 +1 0.8
, — 0.1 /l\ 0.1
1 START

(a) (b)

Transition Model

P(s'|s,a)

(a) (b)

Markov Assumption

P(s'|s,a)

+ 1 0.8

=

START

(a) (b)

Markov Assumption

e ...isitreasonable?
 Real world problems where it applies?
e Real world problems where it doesn’t apply?

Agent’s Utility Function

 Performance depends on the entire sequence
of states and actions.

— “Environment history”

* In each state, the agent receives a reward
R(S).
— The reward is real-valued. It may be positive or
negative.
e Utility of environment history = sum of reward
received.

Reward function

P(s'|s,a)

R(S)

3 -.04 -.04 -.04 + 1

2 -.04 -.04 -1

1 START -.04 -.04 -.04
1 2 3 4

0.1

0.8

(b)

0.1

Decision Rules

e Decision rules say what to do in each state.
e Often called policies, .
e Action for state s is given by n(s).

()

Our Goal

e Find the policy that maximizes the expected
sum of rewards.

e Called an optimal policy.

()

Markov Decision Process (MDP)

M=(S,A,P,R)

S = set of possible states

A = set of possible actions

P(s’|s,a) gives transition probabilities
R = reward function

Goal, find an optimal policy, m*.

Break from the book

e Let’s talk about why MDPs are awesome.

MDPs In Literature

Background

A d-dimensional continuous-state Markov decision process
(MDP) is a tuple M = (S, A, P,R), where S C R%is a
set of possible state vectors, A is a set of actions, P is the
transition model (with P(x, a,x’) giving the probability of
moving from state x to state x’ given action a), and R is the
reward function (with R(x, a,x") giving the reward obtained
from executing action ¢ in state x and transitioning to state
x"). Our goal is to learn a policy, 7, mapping state vectors
to actions so as to maximize return (discounted sum of re-
wards). When P is known, this can be achieved by learning
a value function, V', mapping state vectors to return, and se-

MDPs in Literature
2. Background

Sequential decision problems are often formulated as
MDPs, each a tuple M = (S, A, P,R), where S and A
are the sets of possible states and actions respectively,
P gives state transition probabilities: P(s,a,s’) =
Pr(s; 1=5'|s;=s,a;=a), where t is the current time
step, and R(s,a, s ,r) = Pr(ri=r|si=s,a;=a, st 11=5")
is the reward distribution. R represents the reward
distribution rather than the expected reward to facil-
itate proofs in the appendix. If §, A, or U are un-
countable, replace the corresponding probability dis-
tributions with probability density functions, summa-
tions with integrals, and mixima with suprema. An
agent, A, with time-varying parameters 0; € © (typ-
ically function approximator weights, learning rates,

MDPs in the Real World

& Login/ creatg ~ccount

& :
S
{ } Article Discussion Read Edit View history Q
) .
A TD-Gammon
Ev)[ldin From Wikipedia, the free encyclopedia

TD-Gammon was a computer backgammon program developed in 1992 by Gerald Tesauro at IBM's Thomas J. Watson
Research Center. Its name comes from the fact that it is an artificial neural net trained by a form of temporal-difference

learning, specifically TD-lambda.

b TD-Gammon achieved a level of play just slightly below that of the top human backgammon players of the time. It explored

strategies that humans had not pursued and led to advances in the theory of correct backgammon play.

edia

lia
wtal

edia

& Log.in/create account

- —

Article Discussion Read Edit View history Q

Reinforcement learning

From Wikipedia, the free encyclopedia

For reinforcement learning in psychology, see Reinforcement

Inspired by behaviorist psychology, reinforcement learning is an area of machine learning in computer science, concerned with how an agent ought to take acfions in an envircnment so as to maximize some notion of cumulative reward. The problem, due to
its generality, is studied in many other disciplines, such as control theory, operations research, information theory, simulation-based optimization, statistics, and Genetic Algorithms. In the operations research and contral literature the field where reinforcement
learning methods are studied is called approximate dynamic programming. The problem has been studied in the theory of optimal control, though most studies there are concerned with existence of optimal solutions and their characterization, and not with the
learning or approximation aspects. In economics and game theory, reinforcement learning may be used to explain how equilibrium may arise under bounded rationality

In machine learning, the environment is typically formulated as a Markov decision process (MDP), and many reinforcement learning algorithms for this context are highly related to dynamic programming techniques. The main difference to these classical
technigues is that reinforcement learning algorithms do not need the knowledge of the MDP and they target large MDPs where exact methods become infeasible.

Reinforcement learning differs from standard supervised learning in that correct input/output pairs are never presented, nor sub-optimal actions explicitly corrected. Further, there is a focus on on-line performance, which involves finding a balance between
exploration (of uncharted territory) and exploitation (of current knowledge). The exploration vs. exploitation trade-off in reinforcement learning has been most thoroughly studied through the multi-armed bandit problem and in finite MDPs.

The basic reinforcement learning model consists of:

. a set of environment states S

- aset of actions A4;

. rules of transitioning between states;

. rules that determine the scalar immediate reward of a transition; and

[o R

. rules that describe what the agent observes.

The rules are often stochastic. The observation typically involves the scalar immediate reward associated to the last transition. In many works, the agent is also assumed to observe the current environmental state, in which case we talk about fulf observabifity,
whereas in the opposing case we talk about partial observability. Sometimes the set of actions available to the agent is restricted (e.g., you cannot spend more money than what you possess).

A reinforcement learning agent interacts with its environment in discrete time steps. At each time £, the agent receives an observation o, which typically includes the reward r,. It then chooses an action a; from the set of actions available, which is subsequently

sent to the environment. The environment moves to a new state s; + | and the reward r; + | associated with the fransition (s;,a;.5; = 1) is determined. The goal of a reinforcement learning agent is to collect as much reward as possible. The agent can choose
any action as a function of the history and it can even randomize its action selection.

When the agent's performance is compared to that of an agent which acts optimally from the beginning, the difference in performance gives rise to the notion of regret. Note that in order to act near optimally, the agent must reason about the long term
consequences of its actions: In order to maximize my future income | better go to school now, although the immediate monetary reward associated with this might be negative.

Thus, reinforcement learning is particularly well suited to problems which include a long-term versus short-term reward trade-off. It has been applied successfully to various problems, including robot control, elevator scheduling, telecommunications,
backgammon and checkers (Sutton and Barto 1998, Chapter 11).

Two components make reinforcement learning powerful: The use of samples to optimize performance and the use of function approximation to deal with large environments. Thanks to these two key components, reinforcement learning can be used in large

environments in any of the following situations:

« A model of the environment is known, but an analytic solution is not available;
« Only a simulation model of the environment is given (the subject of simulation-based optimization);
« The only way to collect information about the environment is by interacting with it.

MDPs in the Real World

245 cm

i

Switch

Door

Button

Start

Handle ﬁ

Fig. 2. The first task in the Red Room Domain.

MDPs in the Real World

Fig. 1: The uBot-5 situated in the impact pendulum apparatus.

MDPs in the Real World

e http://heli.stanford.edu/

MDPs in the Real World

Deltoid
Aﬁ-‘,’ Biceps
. [Brachialis
rajr Triceps
b:"d. @ Brachioradialis @
N Extensor carpi &
" /} " rodialts Shoulder
/
;{,'u'/ Angle
i

MDPs in the Real World

Pictures removed for online version

Optotrak Certus System for detecting arm position Planar, frictionless movement

3D arm model = 5 degrees of freedom, 102 muscles

MDPs in the Real World

Elevator Scheduling
DRAM Scheduling
Propofol Administration
Operations research
Games (e.g. Tetris, Mario)

MDPs-RL-Neuroscience

Back to the book

> | | > > | | >
b - |= i M=
—_— —
1 I P I R I P I
f EI R(s) <—-1.6284 —~04278 < R(s) <—0.0850
- - -
A - | = <+ - |

2 bl=|=[t] [HH Y

—0.0221 <R(s) <0 R(s)>0
(a) (b)

Finite/Infinite Horizon

Finite horizon: the “game” ends after N steps.
Infinite horizon: the “game” never ends

“With a finite horizon, the optimal action in a
given state could change over time.”

— The optimal policy is nonstationary.

With infinite horizon, the optimal policy is
stationary.

Utilities over time

e Additive rewards:

U, ([S,,5,,S,,...]) = R(S,) + R(S,)+ R(S,) +...

e Discounted rewards:

U, ([S,,S,,S,,...]) = R(S,) + 7R(S,) + 7*R(S,) +...

e Discount factor: 7 €[0,1]

Gamma

2% WolframAlpha:

% WolframAlpha

| 0.9, % from 0 to 30 E] | 0.95"x, x from 0 to 30 E]
= Examples == Random = Examples =4 Random
Input interpretation: Input interpretation:
plet 09" x=01to 30 plot 095 x=0 to 30
Plot: Plot:
1.0 1.0
v O8r
0.6
06
0.4
n4r
0.z
n.zr
v} A 10 15 20 25 an

Computed by Walfram Mathemaricn Download as: PDF | Live Mathematica

Computed by Wolfram Mathemarica Download as: PDF | Live

Discounted Rewards

e Would you rather have a marshmallow now,
or two in 20 minutes?

* Infinite sums!
U, ([Sy,S,5S,,---]) = R(S,) + R(S,) + R(S,) +...

U, ([S,,S,,S,,...]) = R(S,) + 7R(S,) + 7*R(S,) +...

Proper Policy

A proper policy is a policy that is guaranteed
to reach a terminal state.

— Which of the policies for the gridworld are
proper?

Average Reward

U, ([S,,5,,S,,...]) = R(S,) + R(S,)+ R(S,) +...

e What if we took the average?

U, ([S,,5,5,,...]) = %(R(SO)+ R(s,)+R(s,) +...)

e Can be applied to infinite horizon problems
— “beyond the scope of this book”

Utility of States

e Given a policy, we can define the utility of a
state:

e Optimal policy (for state s)

7, =argmaxU " (s)

Utility and Rewards

e Shorthand U™ (s)=U(s)

e Utility = long term total reward from s
onwards

e Reward =short term reward from s

Utility

0.812 0.868 0.918 + 1

0.762 0.660 —1

0.705 0.655 0.611 0.388
1 2 3 4

Optimal Policy

e Optimal policy doesn’t depend on what state
you start in:

7, =argmaxU " (s)

7' (s)=argmax » P(s'|s,a)U(s")

acA(s) 4

Searching for Optimal Policies

 Bellman Equation

U(s)= R(S)+ygﬁ§§ P(s'|s,a)U(s")

e If we write out the bellman equation for all n
states, we get n equations, with n unknowns:
U(s).

 We can solve this system of equations to
determine the Utility of every state.

Value Iteration

 The equations are non-linear, so we can’t use
standard linear algebra methods.
U(s)=R(s)+ P(s'|s,a)U(s'
(5)=R(s)+7 max 3 P(s'| s,V (s)
e Value iteration: start with random initial
values for each U(s), iteratively update each
value to fit the fight-hand side of the

equation:
U, < R(S)+ymax Y P(s'|s,a)U;(s")

I+ achA(s) <

Value Iteration

* The update is applied simultaneously to every
state.

e If this update is applied infinitely often, we are
guaranteed to find the true U(S) values.

— There is one unique solution

e Given the true U(S) values, how can we select
actions? (Maximum expected utility — MEU)

a, =argmaxZP(S'|St,a)Ui(S')

acA(s) x

Question

e |f the value function is approximate (has
error), can you still get an optimal policy?

a, =argmaxZP(S'|St,a)Ui(S')

acA(s) x

Policy Iteration

If one action is clearly better than all others, then
the exact magnitude of state utilities need not be
precise.

Policy iteration interleaves two steps:

— Policy evaluation: Given a policy, compute the utility
of each state for that policy

— Policy improvement: Calculate a new MEU policy
Terminate when the policy doesn’t change the
utilities.

Guaranteed to converge to an optimal policy

Policy Iteration

In what ways is it better?

Policy evaluation is for a fixed policy — no arg
max. We don’t need to solve a set of nonlinear

equations.
The Bellman equation simplifies to:

U(s)=R(s)+ 72 P(s'|s,z(s)U(s)

These equations are linear (the max has been
removed)

Policy Iteration

* The n linear equations can be solved in O(n3)
with standard linear algebra methods.

e So, the benefit of policy iteration is that the
policy evaluation step is much easier (and
policy improvement is trivial).

e |f O(n3) is still too much, we can perform a few
of the simplified value-iteration steps:

Ui, < R(8)+ 7D P(s'[8, 7(s)U;(s")

Asynchronous Policy Iteration

 We said the utility of every state is updated
simultaneously. This isn’t necessary.

* You can pick and subset of the states and
apply either policy improvement or value
iteration to that subset.

e Given certain conditions, this is also
guaranteed to converge to an optimal policy.

