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CMPSCI 383  
Nov 1, 2011!

Inference in Bayesian Networks"
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Todayʼs topics: exact and approximate inference"

•  Exact!
•  Inference with joint probability distributions!
•  Exact inference in Bayesian networks!
•  Inference by enumeration!
•  Complexity of exact inference!

•  Approximate!
•  Inference by stochastic simulation!
•  Simple sampling!
•  Rejection sampling!
•  Markov chain Monte Carlo (MCMC)!
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Inference terminology"

•  Conditional probability table: data structure that lists 
probabilities of a variable given one or more other 
variables.!

•  Joint distribution:  
distribution that is specified by a Bayesian network!

•  Inference: produces the probability distribution of one 
or more variables given one or more other variables.!
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Example: Joint distribution"

V = Cavity; T = Toothache; C = Catch!
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Example: Home security"
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Compact conditional distributions"

•  Even conditional probability tables can be quite large!
•  Combining functions — that relate the value of the parents to 

the value of the child — is one way of reducing their size!
•  Example (for discrete variables): Noisy-OR!

“inhibition probabilities”!
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Additional complexities: Mixed-mode nets"

•  We discussed how  
to handle discrete  
variables, but BNs  
can be used to  
represent and  
reason about a  
variety of  
variable types!
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Compact conditional distributions"

•  For continuous variables, we can assume some linear functional 
dependence among the variables.!

•  For example, if Cost 
depends on Harvest 
and subsidy, for each  
value of subsidy...!
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Compact conditional distributions"
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Conditional Independence"

Node X is conditionally 
independent of its non-
descendants given its 
parents.!
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Conditional Independence"

Node X is conditionally 
independent of all other 
nodes in the network given 
its “Markov blanket” (its 
parents, children, and their 
parents).!
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Alarm 

JohnCalls MaryCalls 

Conditional independence (revisited)"

•  Are JohnCalls and MaryCalls independent?!
•  No, they are not completely independent!
•  Whether they are independent is conditional on the value of 

Alarm"
•  If the value of Alarm is known, are JohnCalls and 

MaryCalls independent?!
•  Yes, for each known value of A, J and M are independent!

Alarm 
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Conditional independence (revisited)"

•  Are Burglary and Earthquake cond. independent?!
•  Yes, nodes are conditionally independent of their non-

descendents given their parents!
•  Are they completely independent?!

•  No, one can ʻexplain awayʼ the other if Alarm is known.!

Burglary Earthquake 

Alarm Alarm 

Earthquake 
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Inference tasks"

•  Simple queries!
•  Compute posterior marginal P(Xi|E=e)"
•  P(NoGas|Gauge=empty, Lights=on, Starts=false)!

•  Conjunctive queries!
•  P(Xi,Xj|E=e)!

•  Optimal decisions!
•  Need utility information, but also need  

P(outcome | action, evidence)"
•  Value of information — “What info do I need now?”!
•  Sensitivity analysis — “Which values matter most?”!
•  Explanation — “Why do I need a new starter?”!
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Example: Home security"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 
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Types of nodes in inference"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 

Evidence (or “observed”) variables 
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Types of nodes in inference"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 

Query variables!
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Types of nodes in inference"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 

Hidden variables 
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Simple inferences"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 
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Simple inferences"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 
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Simple inferences"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 
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More difficult inferences"

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 
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Itʼs easy with the full joint distribution"

V = Cavity; T = Toothache; C = Catch!
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...donʼt we have the full joint distribution?"

But how do we use it?!
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P(B|j,m) = <0.284, 0.716> 

Inference by enumeration"

Recursive depth-first enumeration — O(dn)"
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Enumeration tree"

Whatʼs inefficient about this?!
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Removing inefficiencies"

•  Two problems with enumeration!
•  Repeated computation!
•  Irrelevant variables (any node that is not an 

ancestor of a query or evidence node)!
•  However, repeated computations can be 

eliminated by variable elimination!
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Removing irrelevant variables"

•  Consider the query 
!    P(JohnCalls|Burglary=true)"

•  Summing over m is identically 1  
M is irrelevant to this specific query"



29 

Not all networks are so simple"



30 

Complexity of exact inference"

•  Singly connected networks or polytrees!
•  At most one undirected path between any two nodes in the 

network!
•  Time and space complexity in linear in n!

•  Multiply connected networks!
•  Time and space complexity is exponential even when the 

number of parents per nodes is bounded!
•  Consider — Special case of Bayesian network inference is 

inference in propositional logic.  Inference is as hard as 
finding the number of satisfying assignments (#P-hard)!

•  Thus, may want to consider lower-complexity 
methods for inference that are approximate!
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Approximate Inference"

•  Inference by stochastic simulation!
•  Simple sampling!
•  Rejection sampling!
•  Likelihood weighting!
•  Markov chain Monte Carlo (MCMC)!
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Inference terminology"

•  Stochastic Process: a type of non-
deterministic process that is the core of 
approximate inference techniques.!

•  Markov Process: a type of sequential process 
in which the next state depends only on the 
prior state!

•  Monte Carlo Algorithm: an algorithm that 
relies on non-determinism to simulate a system!



33 

Why approximate inference?"

•  Inference in singly connected networks  
is linear!!

•  ...but many networks are not singly connected!
•  Inference in multiply connected networks is 

exponential, even when the number of 
parents/node is bounded!

•  May be willing to trade some small error for 
more tractable inference!
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Solitaire and Stanislaw Ulam"
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Stochastic simulation"

•  Core idea!
•  Draw samples from a sampling distribution defined  

by the network!
•  Compute an approximate posterior probability  

in a way that converges to the true probability!
•  Methods!

•  Simple sampling from an empty network!
•  Rejection sampling — reject samples that donʼt agree with 

the evidence!
•  Likelihood weighting — weight samples based on evidence!
•  Markov chain Monte Carlo — sample from a stochastic 

process whose stationary distribution is the true posterior!
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What are samples?"

V = Cavity; T = Toothache; C = Catch!
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What are samples?"
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Simple sampling"

•  Given an empty network...!
•  And beginning with nodes without parents...!
•  We can sample from conditional distributions 

and instantiate all nodes.!
•  This will produce one element of the joint 

distribution.!
•  Doing this many times will produce an 

empirical distribution that approximates the 
full joint distribution.!
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Example"

True 

False True True 

TFTT 
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Bayesian networks are generative"

•  BNs can generate samples from the world 
they represent!

•  Generating samples is efficient (linear) even 
though general probabilistic inference is not!

•  Thus, we will attempt to use the efficient 
procedure to approximate the inefficient one!
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Benefits and problems of simple sampling"

•  Works well for an empty network!
•  Simple!
•  In the limit (many samples), the estimated 

distribution approaches the true posterior!
•  But in nearly all cases, we have evidence, 

rather than an empty network!
•  What can we do?!
•  Throw out cases that donʼt match the 

evidence!
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Example"
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Rejection sampling"

•  Sample the network as before...!
•  But discard samples that donʼt correspond 

with the evidence.!
•  Similar to real-world estimation procedures, 

but the network is the stand-in for the world 
(much cheaper and easier).!

•  However, hopelessly expensive for large 
networks where P(e) is small.!
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Likelihood weighting"

•  Do simple sampling as before...!
•  But weight the likelihood of each sample 

based on the evidence!
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Evidence"

True 

False True True 

w = 1.0 x 0.1 x 0.9 = 0.09 w = 1.0 x 0.1 w = 1.0 
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Likelihood weighting"

•  Do simple sampling as before...!
•  But weight the likelihood of each sample 

based on the evidence!
•  Inferred values only pay attention to the evidence 

in ancestors, not children, thus producing 
estimates somewhere in between the prior and the 
posterior!

•  The weighting makes up the difference!
•  Problems!

•  Performance degrades with many evidence 
variables!
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Markov chain Monte Carlo"

•  Markov chain!
•  Description of the state of a  

system at successive times!
•  Markov property — State at time  

t+1 depends only on the state at 
time t, not time t-i for i>0!

•  Monte Carlo–!
•  A class of non-deterministic algorithms used to 

simulate the behavior of a system!
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Stochastic sampling"



49 



50 

MCMC"

•  The “state” of the system is the current 
assignment of all variables!

•  Algorithm!
•  Initialize all variables randomly!
•  Generate next state by sampling one variable 

given its Markov blanket!
•  Sample each variable in turn, keeping other 

evidence fixed.!
•  Variable selection can be sequential or 

random!
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Markov chain"
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Probability given Markov blanket"



53 

MCMC Problems"

•  Difficult to tell if it has converged!
•  Multiple parameters (e.g., burn-in period)!
•  Can be wasteful if the Markov blanket is large 

because probabilities donʼt change much!
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Todayʼs topics: exact and approximate inference"

•  Exact!
•  Inference with joint probability distributions!
•  Exact inference in Bayesian networks!
•  Inference by enumeration!
•  Complexity of exact inference!

•  Approximate!
•  Inference by stochastic simulation!
•  Simple sampling!
•  Rejection sampling!
•  Markov chain Monte Carlo (MCMC)!
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Next Class"

•  Making simple decisions: Utility theory!
•  Secs. 16.1 – 16.4!


