Inference in Bayesian Networks

CMPSCI 383 Nov 1, 2011

Today's topics: exact and approximate inference

- Exact
 - Inference with joint probability distributions
 - Exact inference in Bayesian networks
 - Inference by enumeration
 - Complexity of exact inference
- Approximate
 - Inference by stochastic simulation
 - Simple sampling
 - Rejection sampling
 - Markov chain Monte Carlo (MCMC)

Inference terminology

- Conditional probability table: data structure that lists probabilities of a variable given one or more other variables.
- Joint distribution: distribution that is specified by a Bayesian network
- **Inference**: produces the probability distribution of one or more variables given one or more other variables.

Example: Joint distribution

V = Cavity; T = Toothache; C = Catch

Example: Home security

Compact conditional distributions

- Even conditional probability tables can be quite large
- Combining functions that relate the value of the parents to the value of the child — is one way of reducing their size
- Example (for discrete variables): Noisy-OR

"inhibition probabilities"

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Additional complexities: Mixed-mode nets

 We discussed how to handle discrete variables, but BNs can be used to represent and reason about a variety of variable types

Compact conditional distributions

• For continuous variables, we can assume some linear functional dependence among the variables.

Compact conditional distributions

Conditional Independence

Node X is conditionally independent of its nondescendants given its parents.

Conditional Independence

Node X is conditionally independent of all other nodes in the network given its "Markov blanket" (its parents, children, and their parents).

Conditional independence (revisited)

- Are JohnCalls and MaryCalls independent?
 - No, they are not completely independent
 - Whether they are independent is *conditional* on the value of *Alarm*
- If the value of *Alarm* is known, are *JohnCalls* and *MaryCalls* independent?
 - Yes, for each known value of A, J and M are independent

Conditional independence (revisited)

- Are *Burglary* and *Earthquake* cond. independent?
 - Yes, nodes are conditionally independent of their nondescendents given their parents
- Are they completely independent?
 - No, one can 'explain away' the other if *Alarm* is known.

Inference tasks

- Simple queries
 - Compute posterior marginal $P(X_i|E=e)$
 - *P(NoGaslGauge=empty, Lights=on, Starts=false)*
- Conjunctive queries
 - *P*(*X_i*,*X_j*/*E=e*)
- Optimal decisions
 - Need utility information, but also need *P(outcome l action, evidence)*
- Value of information "What info do I need now?"
- Sensitivity analysis "Which values matter most?"
- Explanation "Why do I need a new starter?"

Example: Home security

Types of nodes in inference

Evidence (or "observed") variables

Types of nodes in inference

Query variables

Types of nodes in inference

Hidden variables

Simple inferences

Simple inferences

Simple inferences

More difficult inferences

It's easy with the full joint distribution

	7	Γ	$\neg T$		
	C	$\neg C$	C	$\neg C$	
V	0.108	0.012	0.072	0.008	
$\neg V$	0.016	0.064	0.144	0.576	

V = Cavity; T = Toothache; C = Catch

...don't we have the full joint distribution?

But how do we use it?

Inference by enumeration

Recursive depth-first enumeration $- O(d^n)$

 $\mathbf{P}(B|j,m)$

Enumeration tree

What's inefficient about this?

Removing inefficiencies

- Two problems with enumeration
 - Repeated computation
 - Irrelevant variables (any node that is not an ancestor of a query or evidence node)
- However, repeated computations can be eliminated by variable elimination

Removing irrelevant variables

Consider the query
P(JohnCalls/Burglary=true)

 $P(J|b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a|b,e) P(J|a) \sum_{m} P(m|a)$

• Summing over *m* is identically 1 *M* is irrelevant to this specific query

Thm 1: Y is irrelevant unless $Y \in Ancestors(\{X\} \cup \mathbf{E})$

Here, X = JohnCalls, $\mathbf{E} = \{Burglary\}$, and $Ancestors(\{X\} \cup \mathbf{E}) = \{Alarm, Earthquake\}$ so MaryCalls is irrelevant

Not all networks are so simple

Complexity of exact inference

- Singly connected networks or polytrees
 - At most one undirected path between any two nodes in the network
 - Time and space complexity in linear in *n*
- Multiply connected networks
 - Time and space complexity is exponential even when the number of parents per nodes is bounded
 - Consider Special case of Bayesian network inference is inference in propositional logic. Inference is as hard as finding the number of satisfying assignments (#P-hard)
- Thus, may want to consider lower-complexity methods for inference that are approximate

Approximate Inference

- Inference by stochastic simulation
- Simple sampling
- Rejection sampling
- Likelihood weighting
- Markov chain Monte Carlo (MCMC)

Inference terminology

- Stochastic Process: a type of nondeterministic process that is the core of approximate inference techniques.
- Markov Process: a type of sequential process in which the next state depends only on the prior state
- Monte Carlo Algorithm: an algorithm that relies on non-determinism to simulate a system

Why approximate inference?

- Inference in singly connected networks is linear!
- ...but many networks are not singly connected
- Inference in multiply connected networks is exponential, even when the number of parents/node is bounded
- May be willing to trade some small error for more tractable inference

Solitaire and Stanislaw Ulam

Stochastic simulation

- Core idea
 - Draw samples from a sampling distribution defined by the network
 - Compute an approximate posterior probability in a way that converges to the true probability
- Methods
 - Simple sampling from an empty network
 - Rejection sampling reject samples that don't agree with the evidence
 - Likelihood weighting weight samples based on evidence
 - Markov chain Monte Carlo sample from a stochastic process whose stationary distribution is the true posterior

V = Cavity; T = Toothache; C = Catch

What are samples?

Simple sampling

- Given an empty network...
- And beginning with nodes without parents...
- We can sample from conditional distributions and instantiate all nodes.
- This will produce one element of the joint distribution.
- Doing this many times will produce an empirical distribution that approximates the full joint distribution.

Example

Bayesian networks are *generative*

- BNs can generate samples from the world they represent
- Generating samples is efficient (linear) even though general probabilistic inference is not
- Thus, we will attempt to use the efficient procedure to approximate the inefficient one

Benefits and problems of simple sampling

- Works well for an empty network
 - Simple
 - In the limit (many samples), the estimated distribution approaches the true posterior
- But in nearly all cases, we have evidence, rather than an empty network
- What can we do?
- Throw out cases that don't match the evidence

Example

Rejection sampling

- Sample the network as before...
- But discard samples that don't correspond with the evidence.
- Similar to real-world estimation procedures, but the network is the stand-in for the world (much cheaper and easier).
- However, hopelessly expensive for large networks where P(e) is small.

- Do simple sampling as before...
- But weight the likelihood of each sample based on the evidence

Evidence

45

Likelihood weighting

- Do simple sampling as before...
- But weight the likelihood of each sample based on the evidence
 - Inferred values only pay attention to the evidence in *ancestors*, not children, thus producing estimates somewhere in between the prior and the posterior
 - The weighting makes up the difference
- Problems
 - Performance degrades with many evidence variables

Markov chain Monte Carlo

- Markov chain
 - Description of the state of a system at successive times
 - Markov property State at time *t+1* depends only on the state at time *t*, not time *t-i* for *i>0*

- Monte Carlo-
 - A class of non-deterministic algorithms used to simulate the behavior of a system

MCMC

- The "state" of the system is the current assignment of all variables
- Algorithm
 - Initialize all variables randomly
 - Generate next state by sampling one variable given its Markov blanket
 - Sample each variable in turn, keeping other evidence fixed.
- Variable selection can be sequential or random

Markov chain

Probability given Markov blanket

 $P(x'_{i}|mb(X_{i})) = P(x'_{i}|parents(X_{i})) \prod_{Z_{j} \in Children(X_{i})} P(z_{j}|parents(Z_{j}))$

- Difficult to tell if it has converged
- Multiple parameters (e.g., burn-in period)
- Can be wasteful if the Markov blanket is large because probabilities don't change much

Today's topics: exact and approximate inference

- Exact
 - Inference with joint probability distributions
 - Exact inference in Bayesian networks
 - Inference by enumeration
 - Complexity of exact inference
- Approximate
 - Inference by stochastic simulation
 - Simple sampling
 - Rejection sampling
 - Markov chain Monte Carlo (MCMC)

Next Class

- Making simple decisions: Utility theory
- Secs. 16.1 16.4