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Today’s topics

* Quick review of probability
e Representing joint probability distributions

e Bayesian networks
e Syntax and semantics
* Independence relations they encode



Probability terminology

e This type of distribution  Whatis a
gives the probability of Joint distribution
conjunctions of
propositions.

e This method extracts the
probability of a subset of e Whatis
variables from a joint Marginalization
distribution.

e This method extracts the
joint probability of a e Whatis
subset of variables given Conditioning

a set of others.



Joint probability distributions

 Joint probability distributions describe the
probabilities of conjunctions of propositions.

 Example
* Probability of passing all your courses

P(P353:P377,Phiistorys Pengiishs - - )



Example: Visiting the dentist

T -7
C -C C -C
V 10.108 | 0.012 | 0.072 | 0.008
-V 1 0.016 | 0.064 | 0.144 | 0.576

V = Cavity; T = Toothache; C = Catch
What is the sum of probabilities in this table?



Marginalization

T

C

-C

C

0.108

0.012

0.072

0.016

0.064

0.144

0(C) = 0.108 + 0.016 + 0.072 + 0.144 = 0.20

What is the p(C)?




Conditioning

T

C

-C

C

0.108

0.012

0.072

0.016

0.064

0.144

(0.108+0.016)/(0.108+0.012+0.016+0.064)

What is the p(CIT)?

0.62




Conditioning
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0.576

This is just an application of the definition:
p(CIT) = p(C,T) / p(T)




Joint distributions are powerful

 From a joint distribution of a set of variables,
you can calculate

* The joint probability distribution of any subset of
those variables

* The conditional probability distribution of any
subset given any other subset

e The joint distributions is “everything you need
to know” about a set of variables



...but there is a problem: dimensionality

T -7
C -C C -C
V 10.108 [ 0.012 [ 0.072 | 0.008
-V 1 0.016 | 0.064 | 0.144 | 0.576

e Simple conditional probability tables grow
exponentially with the number of variables

e Essentially impossible once you have more
than about 10 variables.



Solution: Exploit independence

T -7
C -C C -C
V 10.108 [ 0.012 [ 0.072 | 0.008
-V 1 0.016 | 0.064 | 0.144 | 0.576

e Do we need to include the weather?

Do we need to include it in every part of the

table?
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Bayesian networks

* A simple, graphical notation for conditional
independence assertions and hence for compact
specification of joint distributions

e Syntax:

e a set of nodes, one per variable

e adirected, acyclic graph (link = "directly influences")

» a conditional distribution for each node given its parents:
P (X;| Parents (X))

e |n the simplest case, conditional distribution
represented as a conditional probability table (CPT)

giving the distribution over X; for each combination of
parent values

12



Example

Topology of network encodes conditional
Independence assertions:

(Toavache) - (Gath;

Weather is independent of the other variables

Toothache and Catch are conditionally independent
given Cavity
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Example: Home security

* |I'm at work, and my neighbor John calls to say my
alarm is ringing, but my neighbor Mary doesn't call.
We live in California, and sometimes the alarm is set
off by minor earthquakes.

e |Is there a burglar?

e Variables:
Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

 We have some probabilistic “causal” knowledge:
A burglar can set the alarm off

An earthquake can set the alarm off

The alarm can cause Mary to call

The alarm can cause John to call
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Example: Home security
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Benefits: Compactness

A CPT for Boolean X; with @

k Boolean parents has Q @
2k rows for the combinations }E{

of parent values

Each row requires @ @

one number p for X; = true
(the number for X = false is just 1-p)

If each variable has no more than k parents, the
complete network requires O(n - 2¥) numbers

l.e., grows linearly with n, vs. O(2") for the
full joint distribution

For burglary net, 1 +1 +4 + 2 + 2 = 10 numbers
(vs. 2°>-1 = 31)
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Semantics

* The full joint distribution is defined

as the product of the local conditional
distributions:

P(X, ..., X)=m",P(XI| Parents(X))

 Example
PjaAmaana-ba-e)

=P(jla) P(mla) P(al-b,-e) P(-b) P(-e)
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Independence

Node X is conditionally
independent of its non-
descendants given its
parents.
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Independence

Node X is conditionally
independent of all other
nodes in the network given
its “Markov blanket” (its
parents, children, and their
parents).
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Example: River Pollution Diagnosis
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: http://www.soc.staffs.ac.uk/research/groups/cies2/project.htm

Source



Example: Estimating auto insurance risk

'/ >

edicalCost (LiabilityCost (PropertyCos
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Example: Car diagnosis

no charging

Initial evidence, Testable variables, Hidden variables
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Constructing Bayesian networks

* 1. Choose an ordering of variables X,, ... , X,

e 2.Fori=1ton
e add X;to the network
« select parents from X,, ... ,X.; such that
P (X | Parents(X))) =P (X | X, ... X;)

This choice of parents guarantees:

P(X,..,X))=T1tr_, P(X/ | Xy, ..., X,) (chain rule)
= 1t1_,P (X;| Parents(X)) (by constr.)
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Example

e Suppose we choose the ordering M, J, A, B, E

P(J I M) =P(J)?
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Example

e Suppose we choose the ordering M, J, A, B, E

PJIM)=P(J)?
No
PAIJ M)=PA)? PAIJ M)=PAIJ)? PAIJ M)=P(AIlM)?
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Example

e Suppose we choose the ordering M, J, A, B, E

=

P(J I M) = P(J)?

No

PAIJ M) =PA)? PAIJM=PAIJ)? PAIJ M =PAIM? No
P(BIA, J M) =P(BIA)?

P(BIA, J M) =P(B)?
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Example

e Suppose we choose the ordering M, J, A, B, E

CED
Np==
D
P(J I M) = P(J)?
No

PAIJ, M) =P(A)? PAIJ, M) =PAIJ? PAIJ M) =PAIM? No
P(BIA, J, M) =P(BIA)? Yes

P(BIA, J, M) = P(B)? No

P(EIB,A,J, M)=P(EIA)?

P(EIB, A J M)=P(EIA, B)?
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Example

e Suppose we choose the ordering M, J, A, B, E

PJIM)=P(J)?
No

PAIJ M)=PA)? PAIJ M)=PAIJ)? PAIJ M)=PAIM)? No
PBIA J M) =PBI|A)? Yes

PBIA, J M)=P(B)? No

P(EIB, A,J,M)=P(EI|A)? No

P(EIB A J M)=P(EIA, B)? Yes

Burga

Earthquake

28



Example contd.

Earthquake

Burgla

e Deciding conditional independence is difficult in
noncausal directions

e (Causal models and conditional independence seem
hardwired for humans!)

e Networkislesscompact: 1 +2+4+2+4=13
numbers needed
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Example: Car diagnosis

Main fuse

Battery age

Alternator
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blown 1.0] § § @ old
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N
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Okay  99.0 p—— veak 175m
Faulty 1.0 none 459 e
Spark plugs
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Y Spark quality
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good 59“"8;1;“'“.0. - pad &3
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Okay 995
Faulty 0.50

Starter Motor

—™ Okay

dim
off

bright 38.7

173 m:
44.0

Starter system

59.6 p—
Faulty 40.4 je :

Fuel system

Okay 90.0
Faulty 10.0

clean 90.0
dirty 10.0

Air filter

Y

Car cranks

True 49.7 -
False S0.3 i

Air system

Okay 84.0
Faulty 16.0

Car starts

True 28.0
False 72.0
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Summary

e Bayesian network:

Directed acyclic graph whose nodes correspond to
r.v.s; each note has a conditional distribution for its

values given its parents.

Provides a concise way to represent conditional
iIndependence relations

Specifies the full joint distribution

Often exponentially smaller than explicit
representation of the joint distribution
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Next Class

e |Inference in Bayesian Networks
e Secs. 14.4,14.5
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