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CMPSCI 383  
October 27, 2011!

Representing Knowledge  
with Bayesian Networks"
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Todayʼs topics"

•  Quick review of probability!
•  Representing joint probability distributions!
•  Bayesian networks!

•  Syntax and semantics!
•  Independence relations they encode!
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Probability terminology"

•  This type of distribution 
gives the probability of 
conjunctions of 
propositions.!

•  This method extracts the 
probability of a subset of 
variables from a joint 
distribution.!

•  This method extracts the 
joint probability of a 
subset of variables given 
a set of others.!

•  What is a  
Joint distribution 

•  What is  
Marginalization 

•  What is  
Conditioning"
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Joint probability distributions"

•  Joint probability distributions describe the 
probabilities of conjunctions of propositions.!

•  Example!
•  Probability of passing all your courses!

! !p(P383,P377,PHistory,PEnglish,…)!
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Example: Visiting the dentist"

V = Cavity; T = Toothache; C = Catch!
What is the sum of probabilities in this table?!
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Marginalization"

What is the p(C)?!
p(C) = 0.108 + 0.016 + 0.072 + 0.144 = 0.20!
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Conditioning"

What is the p(C|T)?!
(0.108+0.016)/(0.108+0.012+0.016+0.064)!

0.62!
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Conditioning"

This is just an application of the definition:!
p(C|T) = p(C,T) / p(T)!
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Joint distributions are powerful"

•  From a joint distribution of a set of variables, 
you can calculate!
•  The joint probability distribution of any subset of 

those variables!
•  The conditional probability distribution of any 

subset given any other subset!
•  The joint distributions is “everything you need 

to know” about a set of variables!
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…but there is a problem: dimensionality"

•  Simple conditional probability tables grow 
exponentially with the number of variables!

•  Essentially impossible once you have more 
than about 10 variables.!
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Solution: Exploit independence"

•  Do we need to include the weather?!
•  Do we need to include it in every part of the 

table?!
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Bayesian networks"

•  A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of joint distributions!

•  Syntax:!
•  a set of nodes, one per variable!
•  a directed, acyclic graph (link ≈ "directly influences")!
•  a conditional distribution for each node given its parents:!

P (Xi | Parents (Xi))!

•  In the simplest case, conditional distribution 
represented as a conditional probability table (CPT) 
giving the distribution over Xi for each combination of 
parent values!
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Example"

•  Topology of network encodes conditional 
independence assertions:!

•  Weather is independent of the other variables!
•  Toothache and Catch are conditionally independent 

given Cavity!
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Example: Home security"

•  I'm at work, and my neighbor John calls to say my 
alarm is ringing, but my neighbor Mary doesn't call. 
We live in California, and sometimes the alarm is set 
off by minor earthquakes. !

•  Is there a burglar?!
•  Variables:  

Burglary, Earthquake, Alarm, JohnCalls, MaryCalls!
•  We have some probabilistic “causal” knowledge:!

•  A burglar can set the alarm off!
•  An earthquake can set the alarm off!
•  The alarm can cause Mary to call!
•  The alarm can cause John to call!
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Example: Home security"
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Benefits: Compactness"

•  A CPT for Boolean Xi with  
k Boolean parents has  
2k rows for the combinations  
of parent values!

•  Each row requires  
one number p for Xi = true  
(the number for  Xi = false is just 1-p)!

•  If each variable has no more than k parents, the 
complete network requires O(n · 2k) numbers!

•  i.e., grows linearly with n, vs. O(2n) for the  
full joint distribution!

•  For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers  
(vs. 25-1 = 31)!



17 

Semantics"

•  The full joint distribution is defined  
as the product of the local conditional 
distributions:!

" "P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))!

•  Example  
P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)!
"= P(j|a) P(m|a) P(a|¬b,¬e) P(¬b) P(¬e)!

n 
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Independence"

Node X is conditionally 
independent of its non-
descendants given its 
parents.!
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Independence"

Node X is conditionally 
independent of all other 
nodes in the network given 
its “Markov blanket” (its 
parents, children, and their 
parents).!
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Example: River Pollution Diagnosis"

Source: http://www.soc.staffs.ac.uk/research/groups/cies2/project.htm 
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Example: Estimating auto insurance risk"
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Example: Car diagnosis"

Initial evidence, Testable variables, Hidden variables 
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Constructing Bayesian networks"

•  1. Choose an ordering of variables X1, … ,Xn!
•  2. For i = 1 to n!

•  add Xi to the network!
•  select parents from X1, … ,Xi-1 such that!

!P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)!

This choice of parents guarantees:!

P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1)        (chain rule)!
! ! != πi =1P (Xi | Parents(Xi))          (by constr.)!n 

n 
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•  Suppose we choose the ordering M, J, A, B, E"

P(J | M) = P(J)?"

Example"
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•  Suppose we choose the ordering M, J, A, B, E!

P(J | M) = P(J)?"
No!
P(A | J, M) = P(A)?  P(A | J, M) = P(A | J)?  P(A | J, M) = P(A | M)?"

Example"
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•  Suppose we choose the ordering M, J, A, B, E"

P(J | M) = P(J)?"
No!
P(A | J, M) = P(A)?  P(A | J, M) = P(A | J)?  P(A | J, M) = P(A | M)?   No!
P(B | A, J, M) = P(B | A)? !
P(B | A, J, M) = P(B)?"

Example"
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•  Suppose we choose the ordering M, J, A, B, E!

P(J | M) = P(J)?"
No!
P(A | J, M) = P(A)?  P(A | J, M) = P(A | J)?  P(A | J, M) = P(A | M)?   No!
P(B | A, J, M) = P(B | A)? Yes"
P(B | A, J, M) = P(B)? No"
P(E | B, A ,J, M) = P(E | A)?!
P(E | B, A, J, M) = P(E | A, B)?!

Example"
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•  Suppose we choose the ordering M, J, A, B, E!

P(J | M) = P(J)?"
No !
P(A | J, M) = P(A)?  P(A | J, M) = P(A | J)?  P(A | J, M) = P(A | M)?   No!
P(B | A, J, M) = P(B | A)? Yes"
P(B | A, J, M) = P(B)? No"
P(E | B, A ,J, M) = P(E | A)? No"
P(E | B, A, J, M) = P(E | A, B)? Yes"

Example"
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Example contd."

•  Deciding conditional independence is difficult in 
noncausal directions!

•  (Causal models and conditional independence seem 
hardwired for humans!)!

•  Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 
numbers needed!
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Example: Car diagnosis "
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Summary"

•  Bayesian network:!
•  Directed acyclic graph whose nodes correspond to 

r.v.s; each note has a conditional distribution for its 
values given its parents.!

•  Provides a concise way to represent conditional 
independence relations!

•  Specifies the full joint distribution!
•  Often exponentially smaller than explicit 

representation of the joint distribution!
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Next Class"

•  Inference in Bayesian Networks!
•  Secs. 14.4, 14.5!


