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CMPSCI 383  
October 13, 2011!

More Constraint Satisfaction"



2 

Todayʼs lecture"

•  A review of CSPs!
•  Local search for CSPs!
•  Taking advantage of the structure of the CSP!
•  Some applications!
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What defines a CSP?"

•  In CSPs, states are defined by assignments of values 
to a set of variables X1...Xn. Each variable Xi has a 
domain Di of possible values.!

•  States are evaluated based on their consistency with 
a set of constraints C1...Cm over the values of the 
variables.!

•  A goal state is a complete assignment to all variables 
that satisfies all the constraints.!
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Local Consistency"

•  Node Consistency: satisfies all unary 
constraints!

•  Arc Consistency: satisfies all binary 
constraints!

•  Path Consistency:!
•  n-consistency: for any consistent assignment to 

any set of n-1 variables,  a consistent value can be 
found for any n-th variable.!
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Arc Consistency"

•  Note:!
•  Not symmetric in general!
•  To make X ac with respect to Y, remove values 

from Dx!
•  To make Y ac with respect to X, remove values 

from Dy!

X is arc-consistent with respect to Y if for every 
value in Dx there is a value in Dy that satisfies the 
binary constraint on arc (X,Y).!
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Arc Consistency (slightly different from the book)"
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Standard Search Formulation"

Let's start with the straightforward approach, then fix it 

States are defined by the values assigned so far 

  Initial state: the empty assignment { } 
  Successor function: assign a value to an unassigned variable that 

does not conflict with current assignment 
 fail if no legal assignments 

  Goal test: the current assignment is complete 

1.  This is the same for all CSPs 
2.  Every solution appears at depth n with n variables 

 use depth-first search 
3.  Path is irrelevant, so can also use complete-state formulation 
4.  b = (n - k )d at depth k, hence n! · dn leaves (d is domain size) 
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Backtracking Search"

  Variable assignments are commutative, i.e., 
[ WA = red then NT = green ] same as [ NT = green then WA = red ] 

  Only need to consider assignments to a single variable at each node 
 b = d and there are dn leaves 

  Depth-first search for CSPs with single-variable assignments is 
called backtracking search 

  Backtracking search is the basic uninformed algorithm for CSPs 

  Can solve n-queens for n ≈ 25 
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Backtracking Search (the bookʼs)"



10 

Improving backtracking efficiency"

•  Basic question: What next step should our 
search procedure take?!

•  Approaches!
•  Minimum remaining values heuristic!
•  Degree heuristic!
•  Least-constraining value heuristic!
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Minimum remaining values (MRV) heuristic"

•  Select the most constrained variable  
(the variable with the smallest number  
of remaining values)!
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Degree heuristic"

•  Select the variable that is involved in the largest 
number of constraints with other unassigned 
variables!

•  The most constraining variable.!
•  A useful tie breaker (and guide to starting).!
•  In what order should its values be tried?!



13 

Allows 0 value for SA 

Allows 1 value for SA 

Least constraining value"

•  Given a variable, choose the least constraining 
value — the value that leaves the maximum 
flexibility for subsequent variable assignments.!

•  Combining these makes 1000 Queens possible.!
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Combining Search with Inference"

•  Basic question — Can we provide better 
information to these heuristics?!

•  Forward checking!
•  Precomputing information needed by MRV!
•  Early stopping!

•  Constraint propagation!
•  Arc consistency (2-consistency)!
•  n-consistency!
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Forward checking"

•  Can we detect inevitable failure early?!
•  And avoid it later?!

•  Yes — track remaining legal values for unassigned 
variables!

•  Terminate search when any variable has no legal 
values.!
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Forward checking"

•  Assign {WA=red}!
•  Effects on other variables connected by constraints 

with WA!
•  NT can no longer be red!
•  SA can no longer be red!
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Forward checking"

•  Assign {Q=green}!
•  Effects on other variables connected by constraints 

with WA!
•  NT can no longer be green!
•  NSW can no longer be green!
•  SA can no longer be green!

Note: not 
MRV choice!
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Forward checking"

•  If V is assigned blue!
•  Effects on other variables connected to WA!

•  SA is empty!
•  NSW can no longer be blue!

•  FC has detected a partial assignment that is 
inconsistent with the constraints.!
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Forward checking"

•  Solving CSPs with combination of heuristics plus forward checking is 
more efficient than either approach alone.!

•  FC checking propagates information from assigned to unassigned 
variables but does not provide detection for all failures.!
•  NT and SA cannot be blue!!

•  Makes each current variable assignment arc consistent, but does not 
look far enough ahead to detect all inconsistencies (as AC-3 would)!
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Arc consistency"

•  X → Y is consistent iff!
! !for every value x of X there is some allowed y!

•  SA → NSW is consistent iff!
! !SA=blue and NSW=red!
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Arc consistency"

•  X → Y is consistent iff!
! !for every value x of X there is some allowed y!

•  NSW → SA is consistent iff!
! !NSW=red and SA=blue!
! !NSW=blue and SA=???!

Arc can be made consistent by removing blue from NSW!



22 

Arc consistency"

•  Arc can be made consistent by removing blue from NSW!
•  Recheck neighbours!

•  Remove red from V!
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Arc consistency"

•  Arc can be made consistent by removing blue from NSW!
•  Recheck neighbours!

•  Remove red from V!
•  Arc consistency detects failure earlier than forward checking!
•  Can be run as a preprocessor or after each assignment.!

•  Repeated until no inconsistency remains!
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n-consistency"

•  Arc consistency does not detect all inconsistencies:!
•  Partial assignment {WA=red, NSW=red} is inconsistent.!

•  Stronger forms of propagation can be defined using 
the notion of n-consistency.!

•  A CSP is n-consistent if for any set of n-1 variables 
and for any consistent assignment to those variables, 
a consistent value can always be assigned to any nth 
variable.!
•  E.g. 1-consistency or node-consistency!
•  E.g. 2-consistency or arc-consistency!
•  E.g. 3-consistency or path-consistency!
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Further improvements "

•  Checking special constraints!
•  Checking Alldif(…) constraint !
•  Checking Atmost(…) constraint!

•  Bounds propagation for larger value domains!
•  Intelligent backtracking!

•  Standard form is chronological backtracking i.e. try 
different value for preceding variable.!

•  More intelligent, backtrack to conflict set.!
•  Set of variables that caused the failure or set of previously 

assigned variables that are connected to X by constraints.!
•  Backjumping moves back to most recent element of the conflict 

set.!
•  Forward checking can be used to determine conflict set.!
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Key Ideas so far"

•  Basic form of a CSP!
•  Different types of CSPs!
•  Types of constraints!
•  Consistent assignment!
•  Complete assignment!
•  Constraint graph!
•  Constraint propagation!
•  Backtracking search for 

CSPs!

•  Heuristics to improve 
backtracking search!
•  MRV!
•  Degree heuristic!
•  Least-constraining value!

•  Interleaving search and 
inference!
•  Forward checking!
•  Arc consistency!
•  Smart backtracking!
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Can this be a local search problem?"

•  Do we need the path 
to the solution or 
only the solution 
itself?!

•  Can we apply local 
search methods?!
•  Hillclimbing!
•  Simulated annealing!
•  Genetic algorithms!

•  Whatʼs a state?!
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What are good heuristics  
for choosing moves  
in local search when  

solving CSPs?"
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Min-conflicts heuristic for local search"

•  To enable local search!
•  allow states with unsatisfied constraints!
•  operators reassign variable values!

•  Variable selection: randomly select any conflicted 
variable!

•  Value selection by min-conflicts heuristic!
•  choose value that violates the fewest constraints!
•  i.e., hill-climb with h(n) = total number of violated constraints!
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Example: 4-Queens"

•  States: 4 queens in 4 columns (44 = 256 states)!
•  Actions: move queen in column!
•  Goal test: no attacks; h(n) = 0!
•  Evaluation: h(n) = number of attacks!

•  Given random initial state, can solve n-queens in almost 
constant time for arbitrary n with high probability  
(e.g., n = 10,000,000).  Average of 50 steps for n = 1M.!
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Why can local search work well?"
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Whatʼs hard about CSPs?"
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Whatʼs hard about CSPs?"

prob. of solution!

avg. constraints per variable!

Graph coloring (color the graph or report impossible): NP complete 
but “almost always easy” !
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Whatʼs hard about CSPs?"
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Whatʼs hard about CSPs?"
Graph coloring (color the graph or report impossible): 
NP complete but “almost always easy” !

avg. constraints per variable!

computational cost using backtrack algorithm (with MRV, breaking ties with 
degree heuristic)!
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Exploiting the structure of CSPs"

•  Decompose into  
independent problems!

•  Tree-structured CSPs can  
be solved in linear time!

•  Reduce problems to  
tree-structured CSPs!
•  Cycle cutset conditioning —  

Remove nodes to create trees!
•  Tree decomposition —  

Decompose problem into a  
tree-structured set of subproblems!
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Cycle cutset conditioning"

•  Want to create a tree!
•  What is a tree? !
•  Why do we want to create one?!
•  Tree-structured CSPs solvable in linear time!

•  Create a tree by deleting nodes !
•  How can you delete nodes in CSPs?!
•  Set value and restrict domains!

•  Does this always work well? !
•  No, what can we do about that?!
•  Step through possible settings!

•  Whatʼs the payoff?!
•  Big efficiency gains O(dc•(n-c)d2)!
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Tree decomposition"

•  Again, want to create a tree!
•  Whatʼs another way of creating  

a tree?!
•  Merging nodes!

•  What are the rules for doing this?!
•  Every variable in ≥1 subproblems!
•  All connected variable pairs, and assoc.  

constraints, in ≥1 subproblems!
•  If a variable appears in 2 subproblems, 

it must appear in all subproblems on the  
path connecting the two subproblems!

•  Now, how can we solve this new problem?!
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Key Ideas for CSPs"

•  Basic form of a CSP!
•  Different types of CSPs!
•  Types of constraints!
•  Consistent assignment!
•  Complete assignment!
•  Constraint graph!
•  Constraint propagation!
•  Backtracking search for 

CSPs!
•  Heuristics to improve 

backtracking search!
•  MRV!
•  Degree heuristic!
•  Least-constraining value!

•  Interleaving search and 
inference!
•  Forward checking!
•  Arc consistency!
•  Smart backtracking!

•  Local search!
•  Min-conflicts heuristic!

•  Using problem structure!
•  Decomposing into 

independent subproblems!
•  Turn into a tree structured 

problem!
•  Cutset conditioning!
•  Tree decomposition!
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Thanks for Andrew Moore…"
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Constraint satisfaction via a Neural Network"
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Next Class: Tuesday Oct 18"

•  Problem set 2 due!
•  Review for midterm: !

Everything except Constraint Satisfaction!


