
1

CMPSCI 383  
October 13, 2011!

More Constraint Satisfaction"

2

Todayʼs lecture"

•  A review of CSPs!
•  Local search for CSPs!
•  Taking advantage of the structure of the CSP!
•  Some applications!

3

What defines a CSP?"

•  In CSPs, states are defined by assignments of values
to a set of variables X1...Xn. Each variable Xi has a
domain Di of possible values.!

•  States are evaluated based on their consistency with
a set of constraints C1...Cm over the values of the
variables.!

•  A goal state is a complete assignment to all variables
that satisfies all the constraints.!

4

Local Consistency"

•  Node Consistency: satisfies all unary
constraints!

•  Arc Consistency: satisfies all binary
constraints!

•  Path Consistency:!
•  n-consistency: for any consistent assignment to

any set of n-1 variables, a consistent value can be
found for any n-th variable.!

5

Arc Consistency"

•  Note:!
•  Not symmetric in general!
•  To make X ac with respect to Y, remove values

from Dx!
•  To make Y ac with respect to X, remove values

from Dy!

X is arc-consistent with respect to Y if for every
value in Dx there is a value in Dy that satisfies the
binary constraint on arc (X,Y).!

6

Arc Consistency (slightly different from the book)"

7

Standard Search Formulation"

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

  Initial state: the empty assignment { }
  Successor function: assign a value to an unassigned variable that

does not conflict with current assignment
 fail if no legal assignments

  Goal test: the current assignment is complete

1.  This is the same for all CSPs
2.  Every solution appears at depth n with n variables

 use depth-first search
3.  Path is irrelevant, so can also use complete-state formulation
4.  b = (n - k)d at depth k, hence n! · dn leaves (d is domain size)

8

Backtracking Search"

  Variable assignments are commutative, i.e.,
[WA = red then NT = green] same as [NT = green then WA = red]

  Only need to consider assignments to a single variable at each node
 b = d and there are dn leaves

  Depth-first search for CSPs with single-variable assignments is
called backtracking search

  Backtracking search is the basic uninformed algorithm for CSPs

  Can solve n-queens for n ≈ 25

9

Backtracking Search (the bookʼs)"

10

Improving backtracking efficiency"

•  Basic question: What next step should our
search procedure take?!

•  Approaches!
•  Minimum remaining values heuristic!
•  Degree heuristic!
•  Least-constraining value heuristic!

11

Minimum remaining values (MRV) heuristic"

•  Select the most constrained variable  
(the variable with the smallest number  
of remaining values)!

12

Degree heuristic"

•  Select the variable that is involved in the largest
number of constraints with other unassigned
variables!

•  The most constraining variable.!
•  A useful tie breaker (and guide to starting).!
•  In what order should its values be tried?!

13

Allows 0 value for SA

Allows 1 value for SA

Least constraining value"

•  Given a variable, choose the least constraining
value — the value that leaves the maximum
flexibility for subsequent variable assignments.!

•  Combining these makes 1000 Queens possible.!

14

Combining Search with Inference"

•  Basic question — Can we provide better
information to these heuristics?!

•  Forward checking!
•  Precomputing information needed by MRV!
•  Early stopping!

•  Constraint propagation!
•  Arc consistency (2-consistency)!
•  n-consistency!

15

Forward checking"

•  Can we detect inevitable failure early?!
•  And avoid it later?!

•  Yes — track remaining legal values for unassigned
variables!

•  Terminate search when any variable has no legal
values.!

16

Forward checking"

•  Assign {WA=red}!
•  Effects on other variables connected by constraints

with WA!
•  NT can no longer be red!
•  SA can no longer be red!

17

Forward checking"

•  Assign {Q=green}!
•  Effects on other variables connected by constraints

with WA!
•  NT can no longer be green!
•  NSW can no longer be green!
•  SA can no longer be green!

Note: not
MRV choice!

18

Forward checking"

•  If V is assigned blue!
•  Effects on other variables connected to WA!

•  SA is empty!
•  NSW can no longer be blue!

•  FC has detected a partial assignment that is
inconsistent with the constraints.!

19

Forward checking"

•  Solving CSPs with combination of heuristics plus forward checking is
more efficient than either approach alone.!

•  FC checking propagates information from assigned to unassigned
variables but does not provide detection for all failures.!
•  NT and SA cannot be blue!!

•  Makes each current variable assignment arc consistent, but does not
look far enough ahead to detect all inconsistencies (as AC-3 would)!

20

Arc consistency"

•  X → Y is consistent iff!
! !for every value x of X there is some allowed y!

•  SA → NSW is consistent iff!
! !SA=blue and NSW=red!

21

Arc consistency"

•  X → Y is consistent iff!
! !for every value x of X there is some allowed y!

•  NSW → SA is consistent iff!
! !NSW=red and SA=blue!
! !NSW=blue and SA=???!

Arc can be made consistent by removing blue from NSW!

22

Arc consistency"

•  Arc can be made consistent by removing blue from NSW!
•  Recheck neighbours!

•  Remove red from V!

23

Arc consistency"

•  Arc can be made consistent by removing blue from NSW!
•  Recheck neighbours!

•  Remove red from V!
•  Arc consistency detects failure earlier than forward checking!
•  Can be run as a preprocessor or after each assignment.!

•  Repeated until no inconsistency remains!

24

n-consistency"

•  Arc consistency does not detect all inconsistencies:!
•  Partial assignment {WA=red, NSW=red} is inconsistent.!

•  Stronger forms of propagation can be defined using
the notion of n-consistency.!

•  A CSP is n-consistent if for any set of n-1 variables
and for any consistent assignment to those variables,
a consistent value can always be assigned to any nth
variable.!
•  E.g. 1-consistency or node-consistency!
•  E.g. 2-consistency or arc-consistency!
•  E.g. 3-consistency or path-consistency!

25

Further improvements "

•  Checking special constraints!
•  Checking Alldif(…) constraint !
•  Checking Atmost(…) constraint!

•  Bounds propagation for larger value domains!
•  Intelligent backtracking!

•  Standard form is chronological backtracking i.e. try
different value for preceding variable.!

•  More intelligent, backtrack to conflict set.!
•  Set of variables that caused the failure or set of previously

assigned variables that are connected to X by constraints.!
•  Backjumping moves back to most recent element of the conflict

set.!
•  Forward checking can be used to determine conflict set.!

26

Key Ideas so far"

•  Basic form of a CSP!
•  Different types of CSPs!
•  Types of constraints!
•  Consistent assignment!
•  Complete assignment!
•  Constraint graph!
•  Constraint propagation!
•  Backtracking search for

CSPs!

•  Heuristics to improve
backtracking search!
•  MRV!
•  Degree heuristic!
•  Least-constraining value!

•  Interleaving search and
inference!
•  Forward checking!
•  Arc consistency!
•  Smart backtracking!

27

Can this be a local search problem?"

•  Do we need the path
to the solution or
only the solution
itself?!

•  Can we apply local
search methods?!
•  Hillclimbing!
•  Simulated annealing!
•  Genetic algorithms!

•  Whatʼs a state?!

28

What are good heuristics  
for choosing moves  
in local search when  

solving CSPs?"

29

Min-conflicts heuristic for local search"

•  To enable local search!
•  allow states with unsatisfied constraints!
•  operators reassign variable values!

•  Variable selection: randomly select any conflicted
variable!

•  Value selection by min-conflicts heuristic!
•  choose value that violates the fewest constraints!
•  i.e., hill-climb with h(n) = total number of violated constraints!

30

Example: 4-Queens"

•  States: 4 queens in 4 columns (44 = 256 states)!
•  Actions: move queen in column!
•  Goal test: no attacks; h(n) = 0!
•  Evaluation: h(n) = number of attacks!

•  Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability  
(e.g., n = 10,000,000). Average of 50 steps for n = 1M.!

31

Why can local search work well?"

32

Whatʼs hard about CSPs?"

33

Whatʼs hard about CSPs?"

prob. of solution!

avg. constraints per variable!

Graph coloring (color the graph or report impossible): NP complete
but “almost always easy” !

34

Whatʼs hard about CSPs?"

35

Whatʼs hard about CSPs?"
Graph coloring (color the graph or report impossible):
NP complete but “almost always easy” !

avg. constraints per variable!

computational cost using backtrack algorithm (with MRV, breaking ties with
degree heuristic)!

36

Exploiting the structure of CSPs"

•  Decompose into  
independent problems!

•  Tree-structured CSPs can  
be solved in linear time!

•  Reduce problems to  
tree-structured CSPs!
•  Cycle cutset conditioning —  

Remove nodes to create trees!
•  Tree decomposition —  

Decompose problem into a  
tree-structured set of subproblems!

37

Cycle cutset conditioning"

•  Want to create a tree!
•  What is a tree? !
•  Why do we want to create one?!
•  Tree-structured CSPs solvable in linear time!

•  Create a tree by deleting nodes !
•  How can you delete nodes in CSPs?!
•  Set value and restrict domains!

•  Does this always work well? !
•  No, what can we do about that?!
•  Step through possible settings!

•  Whatʼs the payoff?!
•  Big efficiency gains O(dc•(n-c)d2)!

38

Tree decomposition"

•  Again, want to create a tree!
•  Whatʼs another way of creating  

a tree?!
•  Merging nodes!

•  What are the rules for doing this?!
•  Every variable in ≥1 subproblems!
•  All connected variable pairs, and assoc.  

constraints, in ≥1 subproblems!
•  If a variable appears in 2 subproblems, 

it must appear in all subproblems on the  
path connecting the two subproblems!

•  Now, how can we solve this new problem?!

39

Key Ideas for CSPs"

•  Basic form of a CSP!
•  Different types of CSPs!
•  Types of constraints!
•  Consistent assignment!
•  Complete assignment!
•  Constraint graph!
•  Constraint propagation!
•  Backtracking search for

CSPs!
•  Heuristics to improve

backtracking search!
•  MRV!
•  Degree heuristic!
•  Least-constraining value!

•  Interleaving search and
inference!
•  Forward checking!
•  Arc consistency!
•  Smart backtracking!

•  Local search!
•  Min-conflicts heuristic!

•  Using problem structure!
•  Decomposing into

independent subproblems!
•  Turn into a tree structured

problem!
•  Cutset conditioning!
•  Tree decomposition!

40

Thanks for Andrew Moore…"

41

42

43

44

45

Constraint satisfaction via a Neural Network"

47

48

49

50

51

52

Next Class: Tuesday Oct 18"

•  Problem set 2 due!
•  Review for midterm: !

Everything except Constraint Satisfaction!

