More Constraint Satisfaction

CMPSCI 383
October 13, 2011

Today’s lecture

e A review of CSPs

e Local search for CSPs

e Taking advantage of the structure of the CSP
e Some applications

What defines a CSP?

e In CSPs, states are defined by assignments of values
to a set of variables X,...X,. Each variable X: has a
domain D, of possible values.

o States are evaluated based on their consistency with
a set of constraints C,...C,, over the values of the
variables.

A goal state is a complete assignment to all variables
that satisfies all the constraints.

Local Consistency

 Node Consistency: satisfies all unary
constraints

* Arc Consistency: satisfies all binary
constraints

« Path Consistency: () 9)

* n-consistency: for any consistent assignment to
any set of n-1 variables, a consistent value can be
found for any n-th variable.

Arc Consistency

X is arc-consistent with respect to Y if for every
value in Dx there is a value in Dy that satisfies the
binary constraint on arc (X,Y).

e Note:

* Not symmetric in general

 To make X ac with respect to Y, remove values
from Dx

e To make Y ac with respect to X, remove values
from Dy

Arc Consistency (slightly different from the book)

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, Xs, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[X;]| do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed « false
for each z in DOMAIN[X]] do
if no value y in DOMAIN[X]] allows (z,7) to satisfy the constraint X; < X
then delete = from DOMAIN[X;]; removed « true
return removed

Standard Search Formulation

Let's start with the straightforward approach, then fix it
States are defined by the values assigned so far

Initial state: the empty assignment { }

Successor function: assign a value to an unassigned variable that
does not conflict with current assignment

- fail if no legal assignments
Goal test: the current assignment is complete

This is the same for all CSPs

Every solution appears at depth nwith nvariables
- use depth-first search

Path is irrelevant, so can also use complete-state formulation
b =(n - £)d at depth &, hence n! - d" leaves (d is domain size)

Backtracking Search

Variable assignments are commutative, i.e.,
[WA = red then NT = green] same as [NT = green then WA = red]

Only need to consider assignments to a single variable at each node
- b = d and there are d"leaves

Depth-first search for CSPs with single-variable assignments is
called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n= 25

Backtracking Search (the book’s)

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns a solution, or failure
if assignment is complete then return assignment
var < SELECT-UNASSIGNED-VARIABLE(csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment then
add {var = value} to assignment
inferences «— INFERENCE(¢sp, var, value)
if inferences # failure then
add inferences to assignment
result «— BACKTRACK(assignment, csp)
if result # failure then
return result
remove { var = value} and inferences from assignment
return failure

Improving backtracking efficiency

e Basic question: What next step should our
search procedure take?

e Approaches
e Minimum remaining values heuristic
* Degree heuristic
» Least-constraining value heuristic

10

Minimum remaining values (MRV) heuristic

SSES SSh Stas LS

e Select the most constrained variable
(the variable with the smallest number
of remaining values)

11

Degree heuristic

O RO

e Select the variable that is involved in the largest
number of constraints with other unassigned
variables

e The most constraining variable.
* A useful tie breaker (and guide to starting).
* |In what order should its values be tried?

12

Least constraining value

Allows 1 value for SA

¢ A
o<

Allows O value for SA

S

* (iven a variable, choose the least constraining
value — the value that leaves the maximum
flexibility for subsequent variable assignments.

e Combining these makes 1000 Queens possible.

13

Combining Search with Inference

e Basic question — Can we provide better
information to these heuristics?

e Forward checking
 Precomputing information needed by MRV
e Early stopping
e Constraint propagation
e Arc consistency (2-consistency)
e Nn-consistency

14

Forward checking

SN

WA NT Q NSW vV SA T

e Can we detect inevitable failure early?
 And avoid it later?

 Yes — track remaining legal values for unassigned
variables

 Terminate search when any variable has no legal
values.

Forward checking

SSEa SN
IWAI INTI|I ; O
B URENE

NSW v SA T
ENEEEE
EiE| N

e Assign {WA=red}

o Effects on other variables connected by constraints
with WA

 NT can no longer be red
e SA can no longer be red

Forward checking

SN S S~

WA NSW \Y SA T

Note: not
MRV choice

e Assign {Q=green}

o Effects on other variables connected by constraints
with WA
« NT can no longer be green
 NSW can no longer be green
e SA can no longer be green

17

Forward checking

Ho—eo—e-n—4¢
IIWAIIINTIIIQIIINSWIIIVIIISAIIITII
(] TEErEErTEErTE] TE[EE]

e If Vis assigned blue

o Effects on other variables connected to WA
o« SAis empty
« NSW can no longer be blue

 FC has detected a partial assignment that is
inconsistent with the constraints.

18

Forward checking

SSEN SR S Se

WA NT Q NSW Vv SA T
M I I I i iren
[(m] TEErEErEErE] TE[Er]
11 [m mErE] E[EoE|
11 [m o] T

» Solving CSPs with combination of heuristics plus forward checking is
more efficient than either approach alone.

* FC checking propagates information from assigned to unassigned
variables but does not provide detection for all failures.
« NT and SA cannot be blue!

 Makes each current variable assignment arc consistent, but does not
look far enough ahead to detect all inconsistencies (as AC-3 would)

19

Arc consistency

L

4

At

—~§s

{ 'y
WA NT Q NSW v SA T
I H|'|H EETNR HIETH

e X — Yis consistent iff
for every value x of Xthere is some allowed y
e SA — NSWis consistent iff

SA=blue and NSW=red

\é/

Arc consistency

STy

([y 'y

WA NT Q NSW) SA T

Bam| N8 XECE] EELE

_}/

e X — Yis consistent iff
for every value x of Xthere is some allowed y
o NSW — SAis consistent iff
NSW=red and SA=blue
NSW=blue and SA=?77
Arc can be made consistent by removing blue from NSW

Arc consistency

WA

L

NT

S

~— g

"y

N

SA

SW v
i NX'H

e Arc can be made consistent by removing blue from NSW

 Recheck neighbours
e Remove red from V

&

22

Arc consistency

ZSA SSE =~

'y
WA NT Q NSW v SA T
B B I XX'0] XE0E
- a—

e Arc can be made consistent by removing blue from NSW

 Recheck neighbours
e Remove red from V

* Arc consistency detects failure earlier than forward checking

« (Can be run as a preprocessor or after each assignment.
* Repeated until no inconsistency remains

23

n-consistency

e Arc consistency does not detect all inconsistencies:
o Partial assignment {WA=red, NSW=red} is inconsistent.

o Stronger forms of propagation can be defined using
the notion of n-consistency.

A CSP is n-consistent if for any set of n-1 variables
and for any consistent assignment to those variables,
a consistent value can always be assigned to any nth
variable.
 E.g. 1-consistency or node-consistency
 E.g. 2-consistency or arc-consistency
e E.g. 3-consistency or path-consistency

24

Further improvements

e Checking special constraints
o Checking Alldif(...) constraint
e Checking Atmosf(...) constraint
» Bounds propagation for larger value domains
 Intelligent backtracking

o Standard form is chronological backtracking i.e. try
different value for preceding variable.

* More intelligent, backtrack to conflict set.

Set of variables that caused the failure or set of previously
assigned variables that are connected to X by constraints.

Backjumping moves back to most recent element of the conflict
set.

Forward checking can be used to determine conflict set.

25

Key Ideas so far

e Basic form of a CSP

o Different types of CSPs
e Types of constraints

e Consistent assignment
o Complete assignment
e Constraint graph

e Constraint propagation

e Backtracking search for
CSPs

Heuristics to improve
backtracking search

e MRV

e Degree heuristic

e Least-constraining value

Interleaving search and
inference

 Forward checking

e Arc consistency

» Smart backtracking

26

Do we need the path
to the solution or
only the solution
itself?

e Can we apply local
search methods?

Can this be a local search problem?
« Hillclimbing
» Simulated annealing

» Genetic algorithms ~

les
« What’s a state? Tasig}

27

What are good heuristics
for choosing moves
in local search when
solving CSPs?

28

Min-conflicts heuristic for local search

e To enable local search
o allow states with unsatisfied constraints
e oOperators reassign variable values
o Variable selection: randomly select any conflicted
variable
e Value selection by min-conflicts heuristic

 choose value that violates the fewest constraints
e i.e., hill-climb with h(n) = total number of violated constraints

29

Example: 4-Queens

o States: 4 queens in 4 columns (44 = 256 states)
e Actions: move queen in column

e (Goal test: no attacks; h(n) =0

e Evaluation: h(n) = number of attacks

N
5%

W
|
h=5

h=2

e Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability
(e.g., n=10,000,000). Average of 50 steps for n = 1M.

30

Why can local search work well?

31

What’s hard about CSPs?

Peter Cheeseman

Bob Kanefsky
RIACS® Sterling Software
Artificial Intelligence Research Branch
NASA Ames Research Center, Mail Stop 244-17
Moffett Field, CA 94035, USA
Email: <last-name>@ptolemy.arc.nasa.gov

Peter Cheeseman, Bob Kaneisky, and
William M. Taylor. Where the really hard
problems are. In J. Mylopoulos and R. Re-
iter, editors, Proceedings of IJCAI-91, pages
331-337, San Mateo, CA, 1991. Morgan Kauf-

mann

Abstract

It is well known that for many NP-complete
problems, such as K-Sat, etc., typical cases are
easy to solve; so that computationally hard
cases must be rare (assuming P # NP). This
paper shows that NP-complete problems can
be summarized by at least one “order param-
eter”, and that the hard problems occur at
a critical value of such a parameter. This
critical value separates two regions of charac-
e deigtically different nransrtise Far savamnle

Where the Really Hard Problems Are

William M. Taylor

Sterling Software

so says nothing about the difficulty of typical instances.
However, this situation raises the question “where are
the really hard instances of NP problems?”. Can a sub-
class of problems be defined that is typically (exponen-
tially) hard to solve, or do worst cases appear as rare
“pathological cases” scattered unpredictably in the prob-
lem space?

In this paper we show that for many NP problems one
or more “order parameters” can be defined, and hard
instances occur around particular critical values of these
order parameters. In addition, such critical values form
a2 boundary that separates the space of problems into
two regions. One region is underconstrained, so the den-
sity of solutions is high, thus making it relatively easy
to find a solution. The other region is overconstrained
and very unlikely to contain a solution. If there are solu-
tions in this overconstrained xesion. then they have such

32

What’s hard about CSPs?

Graph coloring (color the graph or report impossible): NP complete
but “almost always easy”

prob. of solution

4color (8) Solvability

sepos Wi

ad v
lllll

avg. constraints per variable

33

What’s hard about CSPs?

100%3—*

50%

garan

o
.
) ..L .
: 1%
. N
» " o~
d - “.L.
o e
sd') e : "
g WAL

i
Hgial
e e
10%3}(@5 20

34

What’s hard about CSPs?

Graph coloring (color the graph or report impossible):
NP complete but “almost always easy”

computational cost using backtrack algorithm (with MRV, breaking ties with
degree heuristic)

! (c) 4-color difficuity
"1 (b) 3-color difficulty '

Ave. Brotaa slope (n 17140
¥

Ave. Brobas vlews tx Vu.n

[2 |

avg. constraints per variable

35

Exploiting the structure of CSPs

« Decompose into @‘ﬁ"@

iIndependent problems

e Tree-structured CSPs can
be solved in linear time

 Reduce problems to
tree-structured CSPs

e Cycle cutset conditioning —
Remove nodes to create trees

e Tree decomposition —
Decompose problem into a
tree-structured set of subproblems

oSN
DO,
O,

36

Cycle cutset conditioning

e Want to create a tree @ Q
 What is a tree? @"‘

 Why do we want to create one? @‘@
 Tree-structured CSPs solvable in linear time (V)
o Create a tree by deleting nodes @

 How can you delete nodes in CSPs?
o Set value and restrict domains
Does this always work well?
 No, what can we do about that?
o Step through possible settings
What’s the payoff?
« Big efficiency gains O(dc-(n-c)d?) O

Tree decomposition

e Again, want to create a tree (7)

 What’s another way of creating @‘

atree? (sn)
» Merging nodes
What are the rules for doing this?
o Every variable in =1 subproblems

e All connected variable pairs, and assoc. @
constraints, in =1 subproblems @
o If a variable appears in 2 subproblems,

it must appear in all subproblems on the
path connecting the two subproblems

 Now, how can we solve this new problem?

AN

D o

38

Key Ideas for CSPs

Basic form of a CSP
Different types of CSPs
Types of constraints
Consistent assignment
Complete assignment
Constraint graph
Constraint propagation

Backtracking search for
CSPs
Heuristics to improve
backtracking search

e MRV

» Degree heuristic

e Least-constraining value

Interleaving search and
inference

e Forward checking

e Arc consistency

» Smart backtracking
Local search

* Min-conflicts heuristic
Using problem structure

e Decomposing into

independent subproblems
e Turn into a tree structured

problem
» Cutset conditioning
* Tree decomposition

39

Thanks for Andrew Moore...

Note to other teachers and users of these slides. Andrew would be delighted if you found this source
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. If you make use of a significant portion of these
slides in your own lecture, please include this message, or the following link to the source repository of
Andrew's tutorials: hitp:/'www cs cmu.edu/~awm/tutorials . Comments and corrections gratefully received.

40

The Waltz algorithm

One of the earliest examples of a computation posed as a CSP.

The Waltz algorithm is for interpreting line drawings of solid polyhedra.

N

Look at all intersections.

What kind of intersection could this be? A
concave intersection of three faces? Or
an external convex intersection?

Adjacent intersections impose constraints on each other. Use CSP to
find a unique set of labelings. Important step to “understanding” the
image.

-1

Waltz Alg. on simple scenes

Assume all objects:

« Have no shadows or cracks

« Three-faced vertices
« “General position™: no junctions change with small movements of the

eye.
Then each line on image is one of the following:

- Boundary line (edge of an object) (<) with right hand of arrow denoting
“solid” and left hand denoting “space”

« Interior convex edge (+)

» Interior concave edge (-)

NoL
A e 42

18 legal kinds of junctions
WA N1 Ner

WA N RS

¥ Y
< T
GG

Given a representation of the diagram, label each junction in one of the above
manners.

The junctions must be labeled so that lines are labeled consistently at both
ends.

Can you formulate that as a CSP? FUN FACT: Constraint Propagation always
works perfectly. Slide 36

Waltz Examples

L

<5

L7 >
AN

Constraint satisfaction via a Neural Network

45

Time

—

Run 1
M’ﬁ
LEFT RIGHT
SUBNET SUBNET
. .
. . . .
- ® - .
. . . .
Y .
« ® . .
Y . . [
® L]
- @
. .
e @ .]
3 . . .
| BN .
o @
e o
. .

an an

Run 2
—_——
LEFT RIGHT
SUBNET SUBNET

.
. .
. . .
. . . .
- @
L] ®
° []
- [] L]
- @
. 1. °
. ® 1.
* L] .
(BN
LN
® o
.’ .
. ..0.
L JN
L BN

Interpretations

Run 3

——
LEFT RIGHT
SUBNET SUBNET
.
° . . .
o - N
. . . .
L [
. . - .
® ®
. . .
LI |
. .; -
o - |
[- @
° o ® .
. 4. 1. .
o - - @
[- @
L o -
. .| .| .
o - - @
® - @

Scheduling

A very big, important use of CSP methods.

« Used in many industries. Makes many multi-million dollar decisions.
« Used extensively for space mission planning.
- Military uses.

People really care about improving scheduling algorithms!

Problems with phenomenally huge state spaces. But for which
solutions are needed very quickly.

Many kinds of scheduling problems e.g.:

*» Job shop: Discrete time; weird ordering of operations possible; set
of separate jobs.

*»+» Batch shop: Discrete or continuous time; restricted operation of
ordering; grouping is important.

“» Manufacturing cell. Discrete, automated version of open job shop.

47

Job Shop scheduling

At a job-shop you make various products. Each product is a “job” to be done.
E.G.

Job, = Make a polished-thing-with-a-hole

Job, = Paint and drill a hole in a widget
Each job requires several operations. E.G.

Operations for Job,: Polish, Drill
Operations for Job,: Paint, Drill

Each operation needs several resources. E.G.

Polishing needs the Polishing machine

Polishing needs Pat (a Polishing expert)

Drilling needs the Dirill

Drilling needs Pat (also a Drilling expert)
Or Drilling can be done by Chris

Some operations need to be done in a particular order (e.g. Paint after you've
Drilled)

48

Job Shop Formalized

A Job Shop problem is a pair (J, RES)
JisasetofjobsJ={j,,/,, ... j}
RES is a set of resources RES ={R, .. R}

Each job j, is specified by:
- asetof operations O'={0/; O, ... O/ }
« and must be carried out between release-date rd, and due-date dd,.
- and a partial order of operations: (O'; before O’j), (O'.. before O’j,), etc...

Each operation O’ has a variable start time st’ and a fixed duration dv/, and
requires a set of resources. e.g.: O/, requires{ R, , R, ... }.

Each resource can be accomplished by one of several possible physical
resources, e.g. R';; might be accomplished by any one of {r/;, , r/;,, ...}. Each
of the ri;,s are a member of RES.

49

Job Shop Example

J; = polished-hole-thing = { O, , O, }
J, = painted-hole-widget = { 02, , 0%, }
RES = { Pat,Chris,Drill,Paint,Drill, Polisher }
O, = polish-thing: need resources...
{R',, = Pat, R, ,= Polisher}
O1, = drill-thing: need resources...
{R1,, =(r',,=Patorr, ,=Chris), R',, = Drill }
0?2, = paint-widget: need resources...
{ R2,, = Paint}
02, = drill-widget : need resources...
{ R?,, = (r?,,,=Pat or r?,,,=Chris), R?,, = Drill }
Precedence constraints : O?, before O?,. All operations take one time unit du/;
= 1 forall i,/. Both jobs have release-date rd’ = 0 and due-date dd’' = 1.

50

Job-shop: the Variables and
Constraints

Variables
« The operation state times st

* The resources R’,-j (usually these are obvious from the definition of

O'. Only need to be assigned values when there are alternative
physical resources available, e.g. Paf or Chris for operating the drill).

Constraints:

» Precedence constraints. (Some O’s must be before some other
O's).
J

« Capacity constraints. There must never be a pair of operations with
overlapping periods of operation that use the same resources.

Non-challenging question. Can you schedule our Job-shop?

51

Next Class: Tuesday Oct 18

e Problem set 2 due

e Review for midterm:
Everything except Constraint Satisfaction

52

