
Dijkstra’s Algorithm

Last time we saw two methods to solve the all-pairs short-
est path problem: Min-plus matrix powering inO(n3 log n)
time and the Floyd-Warshall algorithm inO(n3) time.
Neither of these algorithms were able to take advantage
of asparseinput graph – a situation where the number of
edgese might beo(n2).

Today we’ll see a dynamic programming algorithm due
to Dijkstra that solves thesingle-sourceshortest path prob-
lem inO(e + n log n) time. (Actually, we’ll only discuss
an implementation that takes slightly longer,O(e log n)
time.) If e = o(n2), we can solve the all-pairs problem in
o(n3) time by solving the single-source problem for each
of then possible sources.

1



The basic strategy is a bit of a hybrid of ideas we’ve seen
already. As in the Prim algorithm discussed in HW#2, we
expand a set of vertices from just the source to the entire
set, making a locally optimal choice at each step and en-
suring that we have a globally optimal solution inside the
set. As in the Floyd-Warshall algorithm, at intermediate
stages we will consider the shortest paths among those
that use only a given set of intermediate vertices. But
in contrast to Floyd-Warshall, these sets of intermediate
vertices will emerge from the algorithm rather than being
predetermined.

Let G be our graph ands our designated source. We let
X be our growing set of vertices, originally just{s} and
eventually all ofV .

Our key data structure will be an arrayd that will give a
distanced[v] for each vertexv. At any time during the
run of the algorithm,d[v] will be the distance froms to v
usingonly intermediate vertices inX. Thus initiallyd[v]
is:

• 0, if v = s

• the length of the edge froms to v, if any

• ∞, if there is no such edge

2



The basic step of the algorithm will be to choose another
vertex to add toX, and update the arrayd accordingly.
We make agreedychoice of vertex, lettingu be the vertex
in V \ X such thatd[u] is smallest, and settingX to be
X ∪ {u}.

The update step is to take each vertexv in V \ X and
consider whether addingu to X requires us to change
d[v]. It suffices to look atd[u] plus the length of the edge
from u to v, if any, and replaced[v] by this if it is an
improvement.

Why couldn’t some other path throughX from s to v be
better than this? To improve on the path that gave rise to
the old value ofd[v], it would have to visitu, and could
visit u only once (since we are assuming non-negative
weights). The best way tou throughX takes distance
d[u]. If we went froms tou and then to some other vertex
w in X before going tov, we would have been better off
going directly froms to w, since:

Lemma: As X grows,d[v] never increases. It reaches its
final value whenv entersX, and at that time every vertex
in X has distance at mostd[v] and every vertex outside
X has distance at leastd[v].

3



Correctness of Dijkstra’s Algorithm

If we believe thatd[v] always represents the shortest dis-
tance froms by paths that only use intermediate vertices
in X, then by the time thatX = V we must haved[v]
as the shortest distance overall. But just to be sure, let’s
look at an arbitraryv and make sure thatd[v] gets set
correctly.

First note thatd[v] can never be set toosmall, since the
arrayd is only set on the evidence of an actual path from
s. We must make sure that anyother path froms to v
must have length at least the final value ofd[v].

If there are any vertices whered[v] is set incorrectly, letv
be one whosed[v] is smallest. Then we can assume that
all u with d[u] < d[v] have their distances correct. At the
time thatv is added toX, all suchu must already be inX,
sincev is thed-minimum vertex not inX. Now consider
any path froms to v. Let (x, y) be the edge on which is
first leavesX (we may haves = x or y = v). If y 6= v,
the length of the path is at leastd[y], andd[y] ≥ d[v].
Otherwise the length of the path is at leastd[x] + e(x, v).
Whenx enteredX, d[v] was compared against this very
value. So again we know that this other path has length
at leastd[v].

4



Implementation of Dijkstra’s Algorithm

While we maintain the arrayd, we also have to keep the
setV \X and carry out two operations on it:

• Find and remove the itemu of V \X such thatd[u] is
minimal, and

• Find an itemv in V \X and decreased[v] if necessary.

These are the two characteristic operations of aprior-
ity queue. If we have a set of tasks, for example, each
with a priority, we may have to find and perform the task
of highest priority, or increase the priority of some task.
(We could also consider decreasing a priority, but we
don’t need that for Dijkstra and it adds complications.)

In the Dijkstra algorithm we will set up a priority queue
of at mostn − 1 items. We will need to carry outn − 1
REMOVE-M IN operations, ande DECREASE-KEY oper-
ations. (Whye? Because we only need to updated[v] if
there is an edge tov from the vertexu currently being
added toX.)

5



A simple implementation of a priority queue uses aheap.
A heap is a binary tree of items, where each item has a
value that is smaller than or equal to that of either of its
children. (That’s the case for amin-heap – in a max-
heap the parent’s value would be greater than or equal
to the childrens’.) We also insist that the tree be as close
as possible to balanced, with the bottom level of leaves
left-justified.

Clearly the item with the smallest value must be at the
root. We can easily remove this item, but we then have to
restore the heap property for the smaller remaining tree.
What we do is to move the rightmost leaf to the root,
then promote items over their parents as necessary to
restore the heap property. To begin, if either of the root’s
children is smaller than the root then we swap the root
with the smaller of the two. Then we look at the old
root’s new children and swap the old root with the smaller
of them if needed. In this way the root item (the original
rightmost leaf) moves down until it is in an acceptable
position. This might takeO(log n) operations.

6



When an item has its value decreased, the shape of the
heap has not changed but that item might need to move
up. We can have it do so by swapping it with its par-
ent until the heap property is restored. We can check
that doing this gets rid of the single violation of the heap
property without creating new ones.

With a heap implementation, connected by pointers to
a single array ofd values, the Dijkstra algorithm has
O(n) phases andO(e) total updates ofd values, taking
O(e log n) time total.

7



In principle, but not generally in practice, the perfor-
mance of the Dijkstra algorithm can be improved if we
implement the priority queue usingFibonacci heaps. Such
a priority queue keeps a number of heaps, linked by point-
ers, instead of just one. Individual operations on the
queue may take more than constant time, but it turns out
that theamortized timefor a sequence of operations is
O(1) per operation. That is, any sequence ofs REMOVE-
M IN and DECREASE-KEY operations on the priority queue
takesO(s) total time. The proof of this involves a po-
tential function, like the one we discussed for the tree-
compression algorithm for the union-find problem.

With this improvement, the running time of Dijkstra’s al-
gorithm drops toO(e) on a weighted graph withn ver-
tices ande edges. In practice, the overhead of Fibonacci
heaps makes them impractical, and ordinary heaps are
usually used.

8



The Bellman-Ford Algorithm

Here is another dynamic programming algorithm for the
all-pairs shortest-path problem, due to Bellman and Ford.
It is slightly slower than Dijkstra’s algorithm but is more
general because it can handlenegative weightsas long
as there are nonegative cycles.

Why would we care about shortest paths where distances
could be negative? Consider a graph where the nodes
represent various different assets and the edges repre-
sent possible transactions trading one asset for another.
The edge weight could represent the potential profit or
loss from a transaction, and these weights could change
rapidly with the market. A “shortest” path fromi to j
would represent the most economical way to convert as-
seti to assetj. A negative cycle would represent an arbi-
trage opportunity, which we would expect not to persist
for very long if the traders are paying attention.

9



CLRS and Kleinberg–Tardos give different presentations
of the Bellman-Ford algorithm, and I will follow KT here.
(This algorithm isn’t in the Adler notes.) We’ll solve
the all-pairs problem by solving then single-destination
problems separately.

Fix a destination vertext. For any vertexv and numberi,
defineOpt(v, i) to be the shortest distance fromv to t us-
ing a path ofat mosti edges. ThusOpt(v, 1) is the length
of the edge fromv to t if there is one, andOpt(v, n−1) is
the actual shortest-path distance. (If there are no negative
cycles, the shortest path must be asimple path, never re-
visiting a vertex.) Note that we also computeOpt(t, i) for
eachi – if one of these is ever negative we have found a
negative cycle and the calculation fails.

10



All we need to do is to computeOpt(v, i + 1) for each
v, given that we have already foundOpt(v, i) for each
v. This is easy. One candidate forOpt(v, i + 1) is just
Opt(v, i) – it may be that no path withi + 1 edges is
shorter than the best path withi edges. For every edge
(v, w) out of v, we have another candidate path, whose
length is the edge weighte(v, w) plusOpt(w, i). We find
the smallest path weight among these candidates and set
Opt(v + 1) to that.

Correctness is obvious – by induction oni we prove that
each valueOpt(v, i) is indeed the least weight of any path
of i or fewer edges fromv to t.

How long does this take? We have a phase of computa-
tion for eachi, and in each phase we must check one can-
didate for each vertex and one for each edge, requiring
O(n+ e) time (O(e) for a connected graph). Thus our to-
tal time for the single-destination problem isO(ne), and
for the all-pairs problemO(n2e). By contrast, Dijkstra
tookO(e log n) for a single source andO(en log n) for all
pairs, but could not handle negative weights.

11



Another advantage of Bellman-Ford is itslocal nature.
Each node has its own estimate of the distance tot, which
it can maintain by getting information from its neighbors.
Algorithms similar to this are used for routing in com-
puter networks, particular when the membership of the
network and the relative distances change frequently.

12



Seidel’s Algorithm

When we used min-plus matrix powering to solve the all-
pairs shortest path problem inO(n3 log n) time, we noted
that we were forced to use ordinary matrix multiplication
rather than subcubic methods such as Strassen’s. Could
we, at least in principle, use subcubic matrix multipli-
cation to improve the running time for all-pairs shortest
path?

What about just the problem of determining the transi-
tive closure of a graph? Warshall’s algorithm takesO(n3)
time, and boolean matrix powering takesO(n3 log n) us-
ing ordinary matrix multiplication. And the boolean semir-
ing, like the min-plus semiring, does not support subtrac-
tion, so we cannot use the Strassen method directly.

13



But thereis a way to useinteger matrix multiplication
to simulate the boolean version. IfA andB are boolean
matrices, and we computeC = AB using integer matrix
multiplication, thencij tells us thenumberof paths from
i to j. All we need to do is change any nonzero entries of
C to ones, and we have the correct boolean result.

We have to be a bit careful in our implementation with
regard to how we represent integers as finite bit strings.
For example, suppose we used integer matrix powering
to compute the transitive closure of a graph, representing
the integers as Javalong variables, and the graph hap-
pened to have exactly264 paths fromi to j? But we know
that the integer product oftwoboolean matrices can have
no entry larger thann, so we could carry out the compu-
tation modulon + 1 or any larger number. We could im-
plement powering by repeated squaring, converting each
integer matrix result to a boolean matrix before proceed-
ing.

Theorem: Let µ(n) be the time complexity of integer
matrix multiplication. Then twon by n boolean matrices
may be multiplied inO(µ(n)) time, and we can compute
the reflexive transitive closure of ann-vertex graph in
O(µ(n) log n) time.

14



Today we will present an algorithm due to Seidel that
uses subcubic matrix multiplication to attack the all-pairs
shortest path problem. But this algorithm only works on
a special case of the problem, when the graph iscon-
nected, undirected, and unweighted. The matrices we
multiply, two at a time, will be either boolean or integer.
The integer matrices will have relatively small entries, at
mostn2.

Remember that Strassen’s method, which we saw, shows
µ(n) to beO(n2.81...), and the best known method (due to
Coppersmith and Winograd) shows thatµ(n) = O(n2.376).
The best lower bound is onlyΩ(n2), and the true asymp-
totic value ofµ(n) is unknown.

15



What will a single matrix multiplication do for us? IfA is
the matrix ofG, then the booleanA2 tells us about paths
of lengthexactly two. This suggests a recursive attack
on the problem. LetG2 be the graph that consists of the
edges ofG together with an edge short-cutting every two-
step path (except for those from vertices to themselves).
The adjacency matrixM [G2] of G2 is easy to calculate in
O(µ(n)) time – we takeA2, component-wise OR it with
A, and zero out the main diagonal. This takes onlyO(n2)
on top of the one boolean matrix multiplication.

Now we’ll recursively apply our algorithm to find the
shortest-path distance matrix ofG2. The distance from
i to j in G2 is about half the distance fromi to j in G –
more precisely, it is theceiling of half the distance. This
is because a path of length2d in G corresponds to a path
of d shortcut edges inG2, and a path of length2d + 1
in G corresponds to a path ofd shortcut edges and one
ordinary edge inG2.

16



In order to compute the exact distances inG, then, we
will need only one bit of additional information for each
i and j – whether the shortest-path distance fromi to
j is odd or even. We define a matrixP [G] to beD[G]
reduced modulo 2. SoP [G] will have a 1 in the (i, j)
entry exactly when the shortest-path distance fromi to j
is odd. For example, the diagonal entries ofP [G] will all
be 0, since the distance from a vertex to itself is0, and
the entries whereA has ones will also have ones.

The resulting algorithm to computeD[G] is a bit bizarre:

• ComputeM [G2] in O(µ(n)) time.

• If M [G2](i, j) = 1 wheneveri 6= j, return the answer.

• Otherwise computeD′[G] = D[G2] recursively.

• ComputeP [G] fromD′[G] in timeO(µ(n)) by a method
to be given later.

• ReturnD[G] = 2D′[G]− P [G].

This leaves us with the questions:

• Why is this correct?

• How long does it take?

• How do we getP [G] from D′[G] in O(µ(n)) time?

17


