
CMPSCI611: The Bipartite Matching Problem Lecture 6

We saw last week that the greedy algorithm can fail to
find the maximum-weightmatching in an arbitrary graph.
In fact it can fail for the simpler problem of finding a
maximum cardinalitymatching in abipartite graph:

* ----- *
\ /

\ /
X

/ \
/ \

* *

If we take the top edge first, we will miss the larger
matching formed by the other two edges. Thus the set
of valid partial matchings on a bipartite graphneed not
bea matroid.

Even this special case can be interesting in practice. Sup-
pose the left set consists of employees, the right set con-
sists of jobs, and there is an edge whenever an employee
is qualified to perform a given job. The maximal match-
ing is a feasible assignment that gets as many jobs as
possible done.

1

Though not a matroid, the set of partial matchings on a
bipartite graph is theintersectionof two matroids – the
matroid of sets that share no point on the left, and the
matroid of sets that share no point on the right. (Why are
each of these sets matroids?)

Later in this lecture we’ll look at the problem of finding
a maximum cardinality set in the intersection of two ma-
troids. But now we’ll look at the bipartite matching prob-
lem, which is simpler and demonstrates the key ideas.

2

Solving the Bipartite Matching Problem:

Let (U, V,E) be a bipartite graph and letM be a match-
ing.

A free vertex for M is one that touches no edge ofM .

An augmenting path for M is a sequence of edges that
starts at a free vertex, ends at a free vertex, and alternates
between edges ofE \ M and edges ofM . It must have
odd length.

The Bipartite Matching Algorithm:

• SetM to ∅.

• While there is an augmenting pathP , replaceM by
M ⊕ P .

• When there is no augmenting path, returnM .

It should be clear that taking the symmetric difference
with an augmenting path increases the size ofM by one.
We must show that it preserves the property of being a
matching, and that we can find an augmenting path unless
M is maximum.

3

The Augmenting Path Operation Preserves Match-
ings:

A matching is precisely a graph where no node has de-
gree more than one. Given our augmenting pathP , we
are removing the edges inP ∩ M and adding those in
P \M . This adds one to the degree of the two endpoints
of P , but they were free vertices before and so now have
degree one. The interior points ofP had degree one in
M before, from the edge inP ∩M , and have degree one
after, from the edge inP \ M . So the resulting graph is
still a matching.

4

An Augmenting Path Exists:

Suppose thatM is not maximum, and therefore that some
larger matchingM ′ exists. LetE ′ be the set of edges
M ⊕ M ′ – then(U, V, E ′) forms a bipartite graph with
degree at most two. A degree-two graph consists of a
collection of paths and cycles, and in this graph each path
and cycle must have edges ofM alternating with edges
of M ′.

But sinceM ′ has more edges thanM , E ′ must contain
moreM ′ edges thanM edges. The cycles inE ′ have an
equal number of edges from each, so there must be at
least one path inE ′ with more edges fromM ′ than from
M (exactly one more, in fact, since its edges alternate).
This is the desired augmenting path.

5

Finding the Augmenting Path:

The natural way to find the path is by breadth-first search.
We have to make sure that we find a path with alternating
edges – to do this we use BFS in a directed graph where
the M edges go fromV to U and the non-M edges go
from U to V .

We need to carry out a BFS from each vertex inU , to
see whether we can find a nonempty path to a free vertex
of eitherU or V . This could takeO(|U ||E|) time. But
we can save some time by avoiding duplication in our
search.

If we start at a vertexu and fail to find a path to a free
vertex, we know that not onlyu but everyU vertex we
encountered in the search lacks a path to a free vertex.
If we mark all these vertices and avoid searching them
again, we save time. Now we visit each vertex only once
for each edge coming into it – this gives us a total time
of O(|E|).

6

CMPSCI611: General Intersections of Matroids Lecture 6

Let’s now generalize the bipartite matching situation. Sup-
pose that we have two matroids(E, I) and (E, J) with
the same set of elements. That is,I andJ are two distinct
definitions of ”valid” sets. Our goal is to find amaximum
cardinalityset that is in bothI andJ .

Note that we have no weighting function here, and there
is no reason to believe that a greedy strategy will work.

In the bipartite matching problem, we could letI be the
sets of edges that share no vertex on the left, andJ be the
sets that share no vertex on the right.

7

A second example of matroid intersection is the problem
of finding abranching in a directed graph, which is a
sort of directed spanning tree.

Definition: A branching in a directed graph(V, E) is a
set of edgesE ′ ⊆ E such that the undirected version of
(V, E ′) is a tree and all the edges ofE ′ point away from
a single vertex, called the root.

A set of edges is a branching with rootr iff its undirected
version is a tree, the in-degree ofr is zero, and the in-
degree of every other vertex is one.

8

The greedy algorithm, looking for a branching with root
a, can fail on the following graph (Figure 3.8):

(a)>>>>>(b)>>>>>(c)
ˆ |
| |
| |
| |
| |

(d)<-----

We have no criterion for choosing an order on the edges!
If we choose the edge fromd to b first, we cannot then
choose the edge froma to b that we need.

But if we let I be the sets of acyclic edges andJ be the
sets of edges that meet the in-degree condition, then a
maximum cardinality set inI ∩ J is what we need. If it
hasn − 1 edges, it is a branching. If not, no branching
exists.

9

The General Algorithm: Instead of an augmenting path,
we look for an augmenting sequence of elements. If we
currently have a setM ∈ (I ∩ J), an augmenting se-
quence is a sequence of elements{e1, . . . , ek} wherek is
an odd number and:

• M + e1 is in I but not inJ

• M + e1 − e2 is in I ∩ J

• M + e1 − e2 + e3 is in I but notJ

• until finally. . .

• M + e1 − e2 + e3 − . . . + ek is in I ∩ J .

If such an augmenting sequence exists, we have found
a set inI ∩ J that is one element larger thanM . If no
such sequence exists, it turns out thatM is maximum. It
follows that repeatedly finding an augmenting sequence
will eventually give us a maximum set.

10

The proof that this method solves the matroid intersec-
tion problem is somewhat involved so we will only sketch
it here. Some of the ideas should become a little clearer
as we look athow to findan augmenting sequence if one
exists.

How to find an augmenting sequence?

For a given setM , we build anauxiliary graph D(M)
as follows:

• The vertices are the elements ofE

• If x ∈ M , y 6∈ M , andM + y − x is in I, D(M) has
the edge(y, x)

• If x ∈ M , y 6∈ M , andM + y − x is in J , D(M) has
the edge(x, y)

We let U be the set of elementsu ∈ E \ M such that
M + u ∈ I, andV the set of elementsv ∈ E \ M such
thatM + v ∈ J . Note that ifU ∩ V 6= ∅, then we have
an augmenting sequence of length 1 andM is definitely
not maximal.

11

• If x ∈ M , y 6∈ M , andM + y − x is in I, D(M) has
the edge(y, x)

• If x ∈ M , y 6∈ M , andM + y − x is in J , D(M) has
the edge(x, y)

Any augmenting sequence corresponds to a path of even
length inD(M) from some elements ∈ U to some other
elementt ∈ V . (Actually it must be aminimum length
such path. We’ll omit the proof of this correspondence.)

But we can argue that if there isno path inD(M) from
U to V , thenM is maximal inI ∩ J . First, letU ′ be the
elements ofM that have paths inD(M) from U , and let
V ′ be those that have paths toV . (Since there is no path
from U to V , U ′ andV ′ are disjoint.)

12

• If x ∈ M , y 6∈ M , andM + y − x is in I, D(M) has
the edge(y, x)

• If x ∈ M , y 6∈ M , andM + y − x is in J , D(M) has
the edge(x, y)

The key point is that sinceU ′ has no edges toV , it is
maximal inU ∪ U ′ for J . Pick anyy ∈ U and look at
U ′ + y. If it were inJ , we could add elements fromM to
it and stay inJ by the Exchange Property, sinceM ∈ J .
By the time we have a set of size|M |, we haveM +y−x
for somex ∈ V ′. But M + y − x cannot be inJ as there
is no edge fromx to y in D(M).

By a similar argument,V ′ is maximal inV ∪ V ′ for I.
Any set inI ∩ J of size greater than|M | would have to
either be bigger thanV ′ in V ∪ V ′ or bigger thanU ′ in
U ∪ U ′. This is a contradiction, soM is maximal.

13

We can easily use BFS to find a shortest possible path
from U to V in D(M), or demonstrate that no such path
exists. The running time turns out to beO(|E|3) times
the time to test a set for membership inI or J – a bad
polynomial but still polynomial.

A variation of this algorithm (see Papadimitriou and Stieglitz)
can be used to find the maximum weight set inI ∩ J ,
given a non-negative weight function onE.

14

But finding the maximum-cardinality set in the intersec-
tion of threematroids is in general a much harder prob-
lem (as far as we know). Consider, for a directed graph
G = (V, E) with fixed verticess andt:

• I is the matroid of sets of edges that are acyclic when
viewed as undirected edges,

• J is the matroid of sets of edges that have no edges
into s and at most one into any other vertex, and

• K is the matroid of sets of edges that have no edges
out of t and at most one out of any other vertex.

A set of edges inI ∩ J ∩K is asimple path from s to t.
The graph has aHamilton path from s to t if and only if
there is a set of size|V | − 1 in I ∩ J ∩K. The Hamilton
path problem isNP-complete, and thus not inP unless
P = NP.

15

