CMPSCI611: The Fast Fourier Transform Lecture 3

The Fast Fourier Transform (FFT) is a divide-and-conquer
algorithm to multiply two polynomials iV (n log n) time
rather than thé(n?) of the most obvious algorithm. In
this lecture we will:

e Set up the context gdolynomial arithmetic,

e See how fastvaluationandinterpolation will allow
us to multiply quickly,

e Reviewcomplex numbersandroots of unity.

e Present and analyze tié&T algorithms for evalua-
tion and interpolation, and finally

e See what this has to do with ordindfgurier trans-
forms

Polynomial Arithmetic:

Suppose we are given two polynomials over the complex
numbers (or over a subset like the reald),= =, a;2"
and B = x;b;z', each of degree at most— 1. Each
polynomial can be represented by a vector, or array, of
Its n coefficients.

AddingA andB is easy todo i (n) time: If C = A+ B
thenc; = a; + b; for eachi. We can’t hope to do better
because we have to look at the entire input to be sure of
the right answer and it také¥n) time to do this.

Multiplying A and B looks like a harder problem. & =
AB, C' may have degree as large as — 2, and each
coefficient ofC depends on many of, maybe all of, the
coefficients ofA and B:

cr = > a;by_;
7

where the range of the sum is such that bgthndb,._;
exist.

Computing eacly;, separately take®(n) each for most
of them, orO(n?) in all. Can we do better?

Evaluation and Interpretation:

We can also represent a polynomial by givingutdue
on sufficiently many inputs. If we fix distinct values
xo, ..., Tn-1, then then valuesA(zy),..., A(x,—1) de-
termine then coefficientsqy, . .., a,—1. We've been told
this in various math courses — why is it true?

The mapping from coefficients to functional values is a
linear tranformation and can thus be represented by a
matrix. For example, iy = 4:

1 zg 23 23\ (ag A(xo)
1y o o} || a1 | | Azy)
1 wo 23 25 || as | | Alxo)
1 w3 25 23)\ as A(xs)

To tell whether this linear transformation isvertible
we need to look at thdeterminanbf its matrix and see
whether it is nonzero. It turns out that for genetahe
determinant of thi¥%andemonde matris

I (z; — x;)

i<j

which is nonzero iff the:;’s are all distinct.

If we have two polynomialg! and B represented by their
values at the same points, andC = AB, then we can
calculate the values af' at each of those points by the
rule C(z;) = A(x;)B(x;). We can get all these values
iIn O(n) total time. (Actually, if A and B are arbitrary
polynomials of degree at most- 1, we will want at least
2n — 1 points, so that we will have enough to determine
all the coefficients of”).

This gives us an alternate way to compute the coefficients
of C'. If we have fast ways tevaluatea polynomial with
given coefficients at given points, anditderpolatethe
coefficients from sufficiently many functional values, we
can compute the mapping:

A, B (coefficients)— C (coefficients)

by a three-step process:

A, B (coefficients) — A, B (values)
l

C (coefficients) < C (values)

(This is the intent of the garbled Figure 2.9 on page 18.)

Complex Numbers and Roots of Unity:

Our divide-and-conquer algorithms for evaluation and in-
terpretation will take advantage of tiparticular values
we choose for the points,, ..., r,_;. For any positive
numbern, there are exactly, complex numbers, that
satisfy the equation™ = 1. These are called the'th
roots of unity

Recall the geometric meaning of multiplication of com-
plex numbers. If we write two nonzero numbers.as=
p1et andw, = poe™®2, then their product,ws is equal
to p1pee’?17%2) Thinking of the numbers as vectors, we
multiply their lengths and add their angles.

So then roots of unity are the numbees™/" for j from

0 throughn — 1. These are unit-length vectors evenly
spaced around the origin. For example, with= 4 the
four roots of unity arel, 7, —1, and—1. Figure 2-10 in
the notes shows the = 8 case.

The Halving Lemma says that if we square each of the
n’'th roots of unity, wheren is even, we get the /2'th
roots of unity, twice each.

An Evaluation Example:

Suppose we want to evaluatézr) = ag + a1z + asx® +
asx® at the four roots of unity, ¢, —1, and—:. The four
values we need are:

aop + a1 + as + as
ap + 1a1 — as — 103
ap — a1 + as — as
ap — 1a1 — a9 + 103

Just as with the two divide-and-conquer multiplication
algorithms, we can identify common pieces of these sums:

(ap + az) + (a1 + as)
(CLQ — CLQ) + i(CLl — CL3>
(ao -+ CLQ) — (a,1 + CL3>
(CLQ — ag) — i(al — a3>

Normally it would take us twelve additions to get these
four numbers, but if we calculate the four in parentheses
first, we can do it with eight. The FFT algorithm will use
the same idea.

FFT Evaluation:
Let A(x) beag + ... + a, 12" ! and write it as follows:

Alz) = (ag+ asx’ + ...+ an_gx”_2)
+z(ar +a’x® + ...+ ap_ ")
— Aeven<x2> + ondd<$2>

Here A.,., IS the polynomial whose coefficients are the
even-numbered coefficients df and similarly forA, .

Aeven<y> = ap + agy + a4y2 R el ¢ P Y !

Aodd(y) = a1 + a3y + a5y2 + ...+ ap—1y

NS NS

—1

A(ﬂ?) = Aeven<ﬂf2> + QZAOdd(ZIZ2>

With a recursive call to our FFT evaluation algorithm,
we will be able to evaluate a polynomial witly2 coef-
ficients atn/2 points. The polynomials we evaluate will
be Acpen(z) @andA,qq(x), and we will evaluate them at the
n/2'th roots of unity. We will need some arrays to store
the answers:

e y is an array such thag, = A(w")
e 4" is an array such thaf"" = A.,e,(w?")

n

e 1/ is an array such that™ = A,(w)

By the Halving Lemma, the /2 points at which the re-
cursive call evaluates the functiont.,.,, and 4,4, are
exactly the points,?* for eachk.

The FFT Evaluation Algorithm:

yEven = fft (a[0],...,a[n-2)]);
yOdd = fft (a[1],...,a[n-1]);
for (int k=0; k < n/2; k++) {
ylk] = yEvenlk] +
(OMEGA’k) » yOdd[K];
y[k + n/2] = yEven|K] -
(OMEGAK) » yOdd[k];}
return vy;

Recall thatA(z) = A.pen(2?) + 2A,04(x%). The value
returned by this algorithm fad (wF) is:

o Appen (W) + wh Agqa(w?r), if k < n/2
L Aeven(w%k) — wﬁAOdd(w%k), If k Z n/2
which is correct becausé+"/? = —wF, asw™/? = —1.

The time analysis is just as for Mergesditn) = 27'(n/2)+
©(n), soT(n) = O(nlogn).

FFT Interpolation:

We argued that the matri¥,,, whose(i, j) entry isw?,
IS Invertible.

In fact its inverse is almost the same as itself. (itg)
entry istw, .

To check this, let's compute the product of these two ma-
trices. The(i, j) entry of the product is

If ; = j, each entry of this sum is”’~*% = 1, and the
sum isn. Butif i # j, each entry i&*—/), and these en-
tries are an equal number of copies of each of the powers
of w7, which will add to zero because they are evenly
spaced around the unit circle.

The interpolation algorithm is thus very similar to the
evaluation algorithm. We need only switch the roles of
the arrays anda, replace each, with w1, and divide
the answer by, before returning it. Of course the timing
analysis Is exactly the same.

10

Ordinary Fourier Transforms:

A function f from the reals to the reals periodicif for
some nonzero numbér, it satisfies the rulg(z + T') =
f(x) for all xz. The most familiar periodic functions are
the sine and cosine from trigonometry.

The theory ofFourier Analysistells us that any continu-
ous periodic function on the reals may be expressed as an
Infinite linear combination of sine and cosine functions
whose period is an integer fraction’of 7'/ k.

11

If we think of f(z) as beingg(e?™/T), then we might
try to approximatey by giving it the correct values on
then roots of unity. As we have just seen, given any set
of values ofg on those roots of unity, there is a unique
polynomial withn coefficients that achieves those values.
The FFT algorithm can get us the coefficients from the
values, or vice versa.

If we could writeg asag + a1z + ... + a,_12" !, we
breakg down as the sum of functions of the formz",

and thus break dowrf as the sum of functions of the
form a,(e>™ MYk, or a;(cos(2rka/T) + isin(2rka/T).
These are the sine and cosine functions of the Fourier
transform. Asn increases, the approximation is correct
on more values and closer in general to the original func-
tion.

12

