
CMPSCI611: Duality in Linear Programming Lecture 25

We have seen a number of situations so far where two
optimization problems are paired, and approach the same
optimal solution in a different way:

• BIN-PACKING: Input items with sizes, input bin size,
compute minimum number of bins needed

• DUAL-BIN-PACKING: Input items with sizes, input
number of bins, compute minimum bin size that suf-
fices to fit all the items

• KNAPSACK: Input items with weights and values,
input weight target, compute maximum value obtain-
able within weight target

• DUAL-KNAPSACK: Input items with weights and
values, input value target, compute minimum weight
needed to meet value target

In each case the optimization depends on two variables,
and the transformation from the problem to its dual de-
pends on interchanging the roles of the two variables.
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Consider our general linear programmingminimization
problem in slack form, where the equality constraints
have been absorbed into the redefinition of thisprimal
problem:

• variablen-vectorx with x ≥ 0

• minimize costC · x
• inequality constraintsAx ≥ b, A anm by n matrix,b

anm-vector

Thedual linear program is as follows:

• variablem-vectory with y ≥ 0

• maximize benefity · b
• inequality constraintsyA ≤ C, A the samem by n

matrix,C ann-vector
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Remember our example of thedieter’s problem, where
x is a vector of food amounts,Aij indicates how much
of nutrient i is in a unit of foodj, b is a list of the re-
quired amounts of each nutrient, andC gives the cost per
unit of each food. The dieter wants to satisfy the nutrient
constraints with the minimum total cost.

We can call the dual problem to this one thevitamin
seller’s problem. The vitamin seller wants to pick an
m-vectory that gives the price per unit of a supplement
for each nutrient. The seller wants to set the price so that
the dieter will buy supplements instead of food. So no
food must be able to provide any nutrient at a cheaper
price than set byy. We look at then-vectoryA, which
gives the price, usingy, of replacing the nutrients in each
food – we must haveya ≤ C. Given this constraint,
the vitamin seller wants to maximize their total revenue,
which isy · b.
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Recall themaximum flow problem, in a network withn
nodes andm edges:

• We have a flow vectorf of lengthm.

• We have anm by n matrix B, whereBeu is −1 if e
flows out ofu, 1 if e flows into u, and0 otherwise.
So fB is ann-vector giving the net flow into each
vertex.

• We have ann-vectord, with a−1 for s, 1 for t, and0
for each other vertex. Our goal is to maximize(fB) ·
d.

• We have anm-vectorc, giving the capacity of each
edge.
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Let’s now try to squeeze this problem into the primal and
dual LP form. We’ll resetn to be the number of interme-
diate vertices (nots or t). Starting with the dual, which
corresponds to the original max flow problem:

• We will sety to bef .

• We will setA to be anm by n + m matrix that hasB
in its firstn columns and the identity matrixIm in the
rest.

• We setC to be an(n + m) vector withn zeros fol-
lowed by our former capacity vectorc.

• The constraintyA ≤ C now means thatfB ≤ 0 and
f ≤ c, as before.

• Our objective function to maximize is now defined as
y · b whereb is anm-vector that has ones for each
edge going out ofs.
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Now we look at the primal LP for this dual:

• Our (n + m)-vectorx is a pair(u, w) whereu is a
weight function on the intermediate vertices andw a
weight function on the edges.

• With the sameA = (B, I) as before, the constraint
Ax ≥ b now meansBu + w ≥ b. For each edge
e = (i, j), we havewe − uj + ui ≥ 0, unlessi = s in
which casewe − uj ≥ 1.

• The objective functionC · x is nowc · w.

(Note a typo in Adler p. 154, withwij ≤ . . . instead
of wij ≥ . . .) Formulated correctly, which is somewhere
between what I have here and what the Adler notes have,
the constraints require thatu be extended to a non-negative
function on all vertices, includings andt, with ut−us ≥
1 andwe for each edgee being at leastuj − ui, The opti-
mal solution for this turns out to be 0/1 valued in bothu
andw, with ui = 0 for vertices on one side of a cut and
ui = 1 on the other. Thenwe = 1 for edges that cross the
cut, and the weighted size of the cut isw ·c, the figure we
are minimizing.
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In general the primal problem (minimizeC · x subject
to Ax ≥ b andx ≥ 0) is related to the dual problem
(maximizey · b subject toyA ≤ C andy ≥ 0) by the
following:

Weak Duality Theorem: If x0 is the optimal solution to
the primal andy0 is the optimal solution to the dual, then
C · x0 ≥ y0b.

Proof: Becausey0 is feasible for the dual,y0A ≤ C
and soy0Ax0 ≤ Cx0 by multiplication on the right. Be-
causex0 is feasible for the primal,Ax0 ≥ b, and hence
y0Ax0 ≥ y0b by multiplication on the left. This gives us
Cx0 ≥ y0b by transitivity.

In the vitamin example, we have that the minimum cost
to buy food to meet the nutrition requirements must be at
least the maximum revenue from vitamins to replace the
food, given that each of the vitamins is sold at a compet-
itive price.
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In fact the two optimal values are not only related in this
way but are the same. This is an example of the:

Strong Duality Theorem: If the primal and dual both
have solutions, the values of their objective functions are
equal. If the primal is infeasible, then the dual is un-
bounded, and vice versa.

We can thus choose one of the problems to solve and get
the solution to the other – in fact there is aprimal-dual
method that attacks both problems simultaneously to see
which is easier to solve.
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We won’t prove the general Strong Duality Theorem here,
but we’ll prove a special case that contains the key geo-
metric idea:

Farkas’ Lemma: Let x be a variable columnm-vector,
y a variable rown-vector,b a fixedn-vector, andA anm
by n matrix. Then exactly one of the following two sets
of constraints is solvable:

(1) : Ax = b, x ≥ 0

(2) : yA ≥ 0, y · b < 0

Proof: If (1) and (2) were both solvable by somex and
y, we would haveyAx = yb from (1) and multiplication,
but (yA)x is the product of two non-negative vectors and
yb < 0 is given by (2), a contradiction.
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Suppose that (1) has no solution – we will find a solution
to (2). LetS be theconegiven by the set{Ax : x ≥ 0}.
By our assumption,b is not inS.

SinceS is a closed and convex set, there must exist a
hyperplane withS on one side andb on the other. Nu-
merically, we can call this hyperplane{y : y · v = α} for
some fixed vectorv and scalarα.

By multiplying bothv andα by−1 if necessary, we can
ensure thatb · v < α < y · v for anyy in S.

Since0 ∈ S, we knowα < 0. Sincev · y > α for
any y ∈ S, vAw > α for any vectorw with w ≥ 0.
But then the vectorvA must satisfyvA ≥ 0, since if it
had any negative entry we could pick aw to makevAw
arbitrarily small.

Now v satisfiesvA ≥ 0 andv · b < α < 0, satisfying (2).
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CMPSCI611: Review for Final Exam Lecture 25

I’ll post a practice exam shortly. The format will be sim-
ilar to that of the midterm except:

• I will try to make it considerably shorter, because we
must deal with a fairly hard time limit of two hours. (I
can and will give you a few minutes before and after
the scheduled slot, but not very much.)

• Along with the ordinary questions I will have several
“true-false with explanation” questions. These will
consist of a statement which you should be able toar-
gueis true or false based on the material of the course.
So if it said “If the MST problem isNP-complete,
thenP = NP”, you would say “true” and then ar-
gue that (1) MST is inP, and (2) if any problem is
both inP and inNP-complete thenP = NP. These
subarguments could be made convincingly in about a
sentence each. The truth of the statement should not
depend on unproven assumptions likeP 6= NP.
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Before the midterm we dealt with three main topics, which
will be the subject collectively of about a quarter of the
final:

• Basic techniques of analysis, asymptotic notation, re-
currences, the Master Theorem, divide and conquer
algorithms

• Greedy algorithms and matroids

• Dynamic programming and shortest-path algorithms,
including matrix multiplication methods

Since these areas are covered more lightly on the exam,
it is less likely that more subtle points would be the sub-
ject of a large question, though the threshold for being
relevant enough for a true/false question is lower.
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There were four main topics after the midterm, each of
which will be the subject of 15-20% of the final exam:

• Randomized Algorithms: Examples and analysis

• NP-completeness theory, proving problems to beNP-
complete, basicNP-complete problems

• Approximation algorithms, the classes of approxima-
tion problems (FPTAS, PTAS, constant, log, and poly-
nomial)

• Linear Programming: Definitions, the simplex algo-
rithm, and duality
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