
CMPSCI611: Lower Bounds on Approximation Lecture 22

We can now divide the approximation problems we’ve
seen into a number of categories:

• Problems with an FPTAS, such as KNAPSACK

• Problems with a PTAS but not a known FPTAS, such
as EUCLIDEAN-TSP

• Problems aproximable to within one constant but NP-
hard to approximate within another, such as VERTEX-
COVER

• Problems approximable to withinO(log n) (Θ(log n)
unlessP = NP), such as SET-COVER

• Problems NP-hard to approximate even within some
polynomial factor (evennε)

1



It is natural to try to usereductions to classify approxi-
mation problems into these or other classes. But the nor-
mal Karp reductions we used to defineNP-completeness
are not suitable here, because they don’t respect numer-
ical values for the score of an optimization problem. A
more sensible reduction is one that maps settings to set-
tings in a way that preserves validity and preserves scores.

Consider our reduction from 3-SAT to 3-CLIQUE, where
we took a 3-CNF formula and constructed a graph where
a clique represented a set of literals that were mutually
compatible and occurred in different clauses of the for-
mula. This mapping from formulas to graphs forms a
transformation from the MAX-3-SAT problem to the MAX-
CLIQUE problem, in which there exists a setting satisfy-
ing k or more clauses if and only if there exists a clique
of sizek in the graph.

2



Using this reduction, we know that if we have a poly-
time algorithm to approximate MAX-CLIQUE to within
any given factor, we have a poly-time algorithm to ap-
proximate MAX-3-SAT within the same factor. But this
works only one way – later in this lecture we will give an
8/7 approximation for MAX-3-SAT, but it isNP-hard to
approximate MAX-CLIQUE to within any constant.

It’s more useful to have reductions that can operate where
there is not an exact correspondence between scores. One
theory defines the classAPX of optimization problems to
be those that have any constant-factor poly-time approxi-
mation algorithm (the first three classes in our hierarchy).
We can define anAP-reduction to be a pair of mappings
between two problemsP1 andP2. The details are a bit
messy, butP2 is in APX and the reduction exists, we can
take an instance ofP1, map it to an instance ofP2, get an
approximate solution, and map this solution back to get
an approximate solution to theP1 instance.

3



Since anAP-reduction is parametrized by how much worse
theP1 approximation may be than theP2 approximation,
it is possible to find optimization problems that areAPX-
complete – inAPX and having aAP-reduction from ev-
ery problem inAPX. If one of these problems had a
PTAS, then the reductions would give PTAS’s for every
problem inAPX. MAX-3-SAT is an example of anAPX-
complete problem.

This theory was useful primarilybeforethe early 1990’s,
when it was proved directly that MAX-3-SAT isNP-hard
to approximate within a particular constant. This result
follows from thePCP theorem, which we discuss briefly
in CMPSCI 601 and basically not at all here. But we’ll
look at some of its implications.

4



The PCP Theorem gives us theNP-hardness of a particu-
lar gap problem. Given a maximization problem where
the scores range from0 to x, and given two real numbers
α andβ with 0 ≤ α < β ≤ 1, the(α, β) gap problem is
to distinguish inputs where the maximum possible score
is less than or equal toαx from inputs where it is greater
than or equal toβx.

From the PCP Theorem, one can prove that the(1 −
ε, 1) gap problem for MAX-3-SAT isNP-hard, whereε
is a particular small positive number. (1/36864, by the
proof inAlgorithmics for Hard Problemsby Hromkovic.)
This implies that MAX-3-SAT cannot have a PTAS un-
lessP = NP. Later work has shown that the best achiev-
able ratio is8/7 (the approximation satisfies at least7/8
as many clauses as the optimum).

One then definesgap reductions, which are simply func-
tions from instances of one problem to instances of an-
other that preserve particular gaps. With these reductions
it’s possible to prove various other gap problemsNP-hard
and thus prove that it isNP-hard to achieve particular ap-
proximation ratios.

5



Even without the PCP Theorem, we can show that “most”
problems do not have an FPTAS. Remember that a deci-
sion problem isstrongly NP-completeif it remainsNP-
complete when its integer inputs are given in unary. An
optimization problem isstrongly NP-hard if the deci-
sion problem of whether a given score is achievable is
stronglyNP-complete.

Suppose we have a stronglyNP-hard optimization prob-
lem where the scores are integers that are polynomial in
the input sizen and the largest number in the input. We’ll
show that if the problem has an FPTAS, thenP = NP.

(Assume we have a maximization problem.) We need to
show that the hypothetical FPTAS allows us to solve the
decision problem in polynomial time, given the inputs in
unary. So we have an input sizen, our inputs are polyno-
mial in n, and the scores are polynomial inn. If U(I) is
the maximum possible score, run the FPTAS withε equal
to 1/(U(I) + 1). The error in determining the maximum
possible score is at mostεU(I) < 1, so the integer value
returned by the FPTAS is the exact correct answer. Since
1/ε is polynomial in the input size, so is the running time
of the FPTAS.

6



We now turn to what wecanaccomplish in approximat-
ing MAX-3-SAT. Remember that our goal is to find a
setting that satisfies as many clauses of a 3-CNF formula
as possible. To be precise, our formulas will haveexactly
three literals per clause, and aren’t allowed to repeat a
literal.

A randomassignment to then variables ought to do pretty
well. If the three literals in a clause are each indepen-
dently set true or false, there is a7/8 chance that the
clause will be satisfied. Because expected values add, the
expected number of satisfied clauses ism (the number of
clauses) times7/8. And a setting that does this wellmust
be an8/7 approximation to the optimum, because the op-
timum can’t satisfy any more thanm clauses as that’s all
there are.

This suggests a sort of Las Vegas algorithm for the ap-
proximation – keep choosing random settings until you
get one that satisfies at least7m/8 clauses. With enough
trials, the probability of failure should get small (or should
it?). In any case we’d like adeterministicapproximation
algorithm.

7



We’ll give two deterministic versions of the randomized
algorithm. The first is similar to the “self-reducibility”
problems on HW#4. If we have any 3-CNF formula,
even one with clauses of fewer than three literals, and
0 and 1 constants, we can compute the expected num-
ber of clauses satisfied by a uniform random assignment.
We add up 1 for each 1-clause,1/2 for each one-literal
clause,3/4 for each two-literal clause, and7/8 for each
three-literal clause.

If we set some of the variables in our original formula, we
may satisfy some clauses, make some unsatisfiable, and
shorten others. But for any given setting we can deter-
mine the expected number of clauses satisfied by a uni-
form random setting of theothervariables. This gives us
a deterministic algorithm as follows.

We first look at settingx1. We compute the expected
number of satisfied clauses if we setx1 to 0, and then
the number if we setx1 to 1. Since these two numbers
average to7m/8, at least one of them is≥ 7m/8.

8



We pick that setting ofx1 and then look at the two ways
to setx2, with that setting ofx1. Again at least one of
the options must be at least7m/8. In this way we set
x3, x4, . . . all the way toxn, each time either increasing
the expected number of clauses we will satisfy or keep-
ing it the same. At the end the expected value is the num-
ber of clauses wehavesatisfied with the setting we have
picked, and this must be at least7m/8.

The other method of derandomizing uses asmall sample
space. When we computed the expected number of sat-
isfied clauses, we didn’t really need the fact that the set-
tings of then variables wereindependentrandom vari-
ables. What we needed was that the three variables in
each clause were independent, so that the probability of
satisfying the clause would be7/8. As long as ourn
random variables are3-wise independent, then, the ex-
pected number satisfied is still7m/8.

9



We’ll show that we can find a set ofn3 particular settings
of then variables that is generic in the following sense –
if we pick one of these settings uniformly at random, the
probability of each variable being set true is exactly1/2
and the settings of the variables are 3-wise independent.
Then we can be sure that one of these settings satisfies at
least7m/8 clauses, since it can’t be that all the settings
score below average.

To get thesen3 settings we need a bit of abstract algebra.
By adding dummy variables, letn be a power of two and
let F be afinite field of ordern. Number the variables
with the elements ofF and arbitrarily pick a setT of n/2
field elements.

If a, b, andc are any three elements ofF , not necessarily
distinct, we define the settingSabc as follows. For any
field elementi, Sabc setsxi to be true iff the field element
ai2 + bi + c is in the setT .

10



If a, b, andc are any three elements ofF , not necessarily
distinct, we define the settingSabc as follows. For any
field elementi, Sabc setsxi to be true iff the field element
ai2 + bi + c is in the setT .

We need to show that for eachi, exactly half of the set-
tings setxi to true. This is easy – if we fixa andb and
vary c, ai2 + bi + c takes on every value inF , so it is in
T for exactly half the possiblec.

Beyond that, we have to show that the random variables
are 3-wise independent. For any triple of variablesxi,
xj, andxk, there aren3 triples of values that the field
valuesi, j, andk might be mapped to by the polynomial
ax2+bx+c. In a field, three function values are sufficient
to determine the coefficients of a quadratic function. So
the n3 settings each takei, j, andk to a different triple
of values, and exactly7/8 of the settings take them to a
triple with at least one component inT .

11



As we mentioned, it can be proved from the PCP Theo-
rem that it isNP-hard to approximate MAX-3-SAT to a
factor better than8/7. You would think that thebestof
then3 settings in our small sample space ought to do bet-
ter than average. Perhaps, but the theorem says it can’t
be an8/7− ε approximation for any positive real number
ε.

Our reduction from MAX-3-SAT to MAX-CLIQUE pre-
serves the score exactly, so it follows immediately from
theNP-hardness of approximating MAX-3-SAT to within
8/7 that it isNP-hard to approximate MAX-CLIQUE to
within 8/7. But much more is known about CLIQUE.
You’ll show on HW#5 that ifanyconstant-factor approx-
imation exists for MAX-CLIQUE, then an FPTAS exists,
which it doesn’t unlessP = NP.

With the PCP Theorem, and further work, it has been
shown that it isNP-hard to approximate MAX-CLIQUE
within a factor ofn

1
2−ε for any positive constantε. The

stronger hypothesisNP 6= ZPP is known to imply that a
factor ofn1−ε is impossible. The best known approxima-
tion algorithm comes within n

log2 n
. That is, there might be

a clique of size almostn, and this algorithm would find
one of sizelog2 n.

12



We showed earlier that SET-COVER can be approximated
to within a factor of ln n. It is known that it isNP-
hard to approximate SET-COVER to withinc log n for
some small constantc, and that ifNP is not contained
in DTIME(nlog log n), it can’t be approximated to within
(1− ε) ln n.

We’ve observed that it isNP-hard to approximate the
minimization problem GRAPH-COLOR to any factor smaller
than4/3. Further work has shown that it isNP-hard to
achieve a factor ofn1/7−ε, and that ifNP 6= ZPP it is
impossible to achieve a factor ofn1−ε. The best known
approximation factor isO(n(log log n)2

(log n)3
).

Telling whether aplanar graph is 3-colorable isNP-
complete, even though it must be 4-colorable. To 4-color
a 3-colorable graph is anNP-hard problem. As far as my
casual web search indicates, it’s not known whether it is
NP-hard to 5-color a 3-colorable graph. On HW#5 you’ll
work through a proof that you can color a 3-colorable
graph withO(

√
n) colors.

13


