
CMPSCI611: Approximating SET-COVER Lecture 21

Today we look at two more examples of approximation
algorithms forNP-hard optimization problems. The first,
for the SET-COVER problem, has an approximation fac-
tor of Θ(log n). The second, for the KNAPSACK prob-
lem, is our first example of afully polynomial approxi-
mation schemeor FPTAS.

In the SET-COVER problem our input is a setU and
a collection of subsetsS1, . . . , Sm, where eachSi has a
non-negative weightwi. A solution is a subcollection of
the set whose union is the entire setU . The score of a
solution is the total weight of the sets used, and our goal
is to minimize this score.

1

SET-COVER is a very general problem. For example,
given an undirected graphG we can letU be the set
of edgesE and letSv for every vertexv be the set of
edges incident onv. If we give eachSv a weight of1,
the minimum weight set cover is just the minimum size
vertex cover ofG. Thus a polynomial-time solution to
the SET-COVER optimization problem could be used to
get a polynomial-time solution to the VERTEX-COVER
decision problem, so the former problem isNP-hard.

Our approximation algorithm for SET-COVER provides
an example ofamortized cost. Suppose we have a col-
lection of sets already chosen and we are considering
choosing a new setSi. The cost of choosingSi is wi,
and the benefit is that some nonzero numberk of new el-
ements will be covered – elements that were not covered
by the previous collection. We say that the amortized cost
of covering each of these elements iswi/k. Note that this
cost depends on the context – on which sets have already
been chosen.

2

Here is a greedy algorithm to approximate SET-COVER.
Begin with the empty collection of sets and add sets one
by one until every element has been covered. At each
stage, choose the setSi that minimizes the quantitywi/k,
whereSi coversk new elements. Thus we cover one or
more new elements each time, using the set that covers a
new element most cheaply in the amortized cost measure.

We can argue that this is a reasonably good approxima-
tion. In fact, given any setSi at all, this greedy algorithm
covers the elements ofSi with a cost that isO(log n)
times greater than the cost ofSi itself. Therefore, what-
ever sets the optimal covering uses, the greedy algorithm
covers all the elements using a cost that is onlyO(log n)
times the cost of those sets, henceO(log n) times the cost
of the optimal covering.

3

To verify this claim about an arbitrary set, let the setSi

be{a1, . . . , ad}, where the elements are numbered in the
order that they are covered by the greedy algorithm. (If
more than one of these elements are covered at the same
time we can choose an arbitrary order among them.)

Look first at elementad. When it was covered, the avail-
able sets to cover it must have includedSi itself. Cover-
ing ad with Si would have incurred an amortized cost of
wi, if ad was the only element covered, or less than that if
there were others covered at the same time. The greedy
algorithm would have taken this option unless it had an-
other at least as good, so it incurred an amortized cost of
at mostwi.

4

Now look at elementad−1. When it was covered, it would
have been possible to cover it,and ad, with the setSi.
This would have incurred an amortized cost of at most
wi/2 (less if other elements were covered at the same
time). Thus the amortized cost incurred by the greedy
algorithm must have been at mostwi/2, as it either used
Si or chose another option with at most the same cost.

Similarly elementad−2 was covered by the greedy algo-
rithm with an amortized cost of at mostwi/3. Each ele-
mentaj incurs an amortized cost of at mostwi/(d−j+1),
all the way througha1 which has a cost ofwi/d. The total
cost of covering all the elements ofSi is thus at most:

wi(
1

d
+

1

d− 1
+ . . . +

1

2
+ 1).

5

Remember that this sum1+ 1
2 + . . .+ 1

d is calledH(d) and
is betweenln d and1+ln d. (This is easy to see by looking
at the graph ofy = 1/x and its integral from 1 tod which
is ln d.) If we let d∗ be the maximum size of any set in
the collection, it follows that the approximation ratio of
this algorithm is at most1+ln d∗. Sinced∗ can be at most
n, the total number of elements inU , the approximation
ratio is at most1 + ln n and thusO(log n).

6

Can we put a better upper bound on the approximation
ratio of this algorithm? No, and in fact we have already
seen the bad example of its behavior. Recall that before
we presented the 2-approximation algorithm for VERTEX-
COVER, we looked at a greedy approximation algorithm
that always chose the vertex of highest degree (among
the edges not yet covered).

When we translate this greedy algorithm to the equiva-
lent SET-COVER problem, we find that it chooses the set
Sv that maximizesk, the number of new edges covered,
and thus minimizes the amortized cost1/k of covering
another edge. It is the same greedy algorithm. We found
in our example that the approximation ratio wasΩ(log n)
(in fact aboutH(n) itself).

We have not proved that some other approximation al-
gorithm might not do better than this one, but in fact it
is NP-hard to approximate SET-COVER to withinc log n
for some positive constantc. We won’t prove this here –
it’s hard.

7

CMPSCI611: Approximating KNAPSACK Lecture 21

Now we look at anNP-hard approximation that has a
fully polynomial approximation scheme. This means
that for any positive numberε, even one that depends
on n, there is a polynomial-time algorithm that approxi-
mates the optimal solution within a factor of1 + ε. Fur-
thermore, the running time of the algorithm is polyno-
mial both inn and in1/ε. Thus, for example, we could
haveε = 1/n3 and still have a polynomial-time algorithm
in n.

Our problem in this case is KNAPSACK, an optimiza-
tion problem that generalizes theNP-complete decision
problem SUBSET-SUM. We haven items, each with a
weight and avalue (both non-negative). A solution is
a set of items whose total weight meets a givenweight
target, the score of a solution is its total value, and our
goal is to maximize the score.

8

Remember that if the weight and value of each item are
the same, this becomes the SUBSET-SUM problem. We
proved that it isNP-complete to decide whether we can
meet a particular weight target, and thusNP-hard to find
the maximum possible weight achievable within the tar-
get.

But also recall that this optimization problem ispseu-
dopolynomial, meaning that if the weights of each ob-
ject are given inunary, we can solve the problem ex-
actly in a time that is polynomial in the new, larger input
size. The KNAPSACK problem is similarly pseudopoly-
nomial. Even if just the weights are integers given in
unary, and the values are real numbers, we can use dy-
namic programming to find the largest value obtainable
for each possible weight. If there are only polynomially
many possible weights, this is a poly-time algorithm.

9

This suggests an approximation algorithm. Justapprox-
imatethe weights by rounding them to the firstk signif-
icant digits for somek. Then there are only2k possi-
ble values for each weight, and the total weight (and the
weight target) can be represented by an integer whose
value is at mostn2k. We then use dynamic programming
to solve the problem exactly for the revised weights. We
might not get exactly the best possible set of items, but
we ought to come pretty close, right?

Sadly, no. We have two choices – round our weights up,
or round them down. If we round them down, we risk
finding a set of items whoseroundedweights meet the
rounded weight target, but whose actual weights don’t
meet the actual weight target. This isn’t a good approx-
imation because it isn’t a valid solution to the original
problem at all.

10

No problem, we’ll just round the weights up. Now we’re
bound to have our approximate solution be a valid solu-
tion to the original problem. But what if there’s a very
low-weight item of very high value? We could have a so-
lution to the rounded-weight problem that omits this item
when it could actually fit along with this solution in the
original problem. The optimal solution could of course
include it, and its value could be a significant fraction of
the score and prevent us from getting a1 + ε approxima-
tion.

The way out of this is interesting – we approximately
solve adifferent optimization problemcalled thedual of
KNAPSACK. Here the input sets are the same, but we
have avalue target instead of a weight target and our
goal is to meet the value target with the smallest possible
weight.

11

Remember that in the dynamic programming solution to
the original problem we only needed the weights to be
small integers, not the values. In the dual problem it’s
the other way round – we can have real-valued weights
as long as the values are small integers, because our dy-
namic programming table has an entry for every possible
value instead of for every possible weight.

Now we can approximate the values while keeping the
weights exact. For each rounded value target, we find a
set of items whoseactual weightis as small as we can
find, and which meets the target. By dynamic program-
ming, we find such a set if it exists. The actual value of
the set we find may be slightly different from the rounded
value, and thus we might miss a different set that has the
same or worse rounded value, but a better real value.

12

But the margin by which the optimal set can outscore
the set we find is only the rounding error in approximat-
ing the values.The rest of this slide is revised slightly
based on the discussion in lecture.If we keep the first
k bits of the value (rounding up or rounding down, as
we like) then each of our estimated item values may be
in error by at mostvmax/2k, wherevmax is the maximum
value. The estimated value of a set may be off by as much
asnvmax/2k. Since this is the difference between the esti-
mated and actual value of the optimal set, and we achieve
at least the same estimated value as does the optimal set,
this is the maximum error of the algorithm.

We thus want to setk so that the maximum possible error
nvmax/2k is at most anε fraction of the optimum value.
We may assume that the optimum is at leastvmax, be-
cause if the most valuable item violates the weight target
by itself we might as well delete it from the problem.
We thus wantk to belog(n/ε), and our table is then size
2k = n/ε. Our running time is thenO(n2/ε), a polyno-
mial in bothn and1/ε as desired. We have constructed
an FPTAS for the KNAPSACK problem.

13

CMPSCI611: On-Line Algorithms Lecture 21

In the time remaining in Lecture 21 I spoke briefly
without slides about on-line algorithms. These slides
were added to the notes after the lecture.

Many algorithmic problems in the real world areon-line
problems, in that the algorithm must respond to each in-
put item as it arrives, without knowledge of future items.
Usually there is a worst-case input sequence that causes
any given on-line algorithm to perform badly. Often an
off-line algorithm for the same problem, that sees the en-
tire input before having to respond, can do much better.

14

On HW#5 we’ll look at the problem of taking a sequence
of items of various sizes and packing them into bins. The
decision problem BIN-PACKING has as input the set of
items with their sizes, the set of bin sizes, and a target
for the maximum number of bins to be used. Often all
the bins are the same size. The corresponding optimiza-
tion problem is to minimize the number of bins. The
optimization problem DUAL-BIN-PACKING has as in-
put the items with their sizes and a number of bins, and
the goal is to minimize the bin size needed to pack the
items in that many bins. This is isomorphic to a schedul-
ing problem where you have tasks of various sizes, each
of which require one worker, and a number of workers,
and you want to minimize the total time needed to do all
the jobs.

In the homework we’ll look at the two-bin case of DUAL-
BIN-PACKING and some on-line algorithms for it where
each item must be placed in a bin as soon as it arrives. Al-
gorithmA0 places each item in the bin that is less full at
the time it is considered. AlgorithmAk gets thek largest
items first and can divide them optimally between the
bins – then it gets the rest of the items in arbitrary or-
der and places each in the bin that is less full at the time.

15

Sometimes we can find an on-line algorithm that iscom-
petitive with the offline algorithm in the following sense.
To bec-competitive for some constantc > 1, the cost of
the online algorithm on any input sequence must be at
mostc times the cost of the optimal offline algorithm on
the same sequence.

We illustrate this with the NEW-SKIER optimization prob-
lem, due to Borodin. It costs $300 to buy skis, and $30
to rent skis if you don’t own them. The sequence of re-
quests consists of zero or more ski outings, followed by a
decision to quit skiing. The objective is to minimize the
cost of skis for the requests.

The optimal offline strategy is to rent skis if there are
fewer than ten outings before you quit, buy skis immedi-
ately if there are going to be more than ten, or do either
if the number is exactly ten.

16

Here is a2-competiive online algorithm: Rent skis the
first ten times, then buy if you go out an eleventh time.
If the number of outings is ten or fewer, this algorithm
performs the same as the optimal one. The worst case is
if you quit after the eleventh time, having spent $600 (ten
rentals and the purchase). The optimal algorithm would
only spend $300 to meet these requests, since it would be
smart enough to buy immediately.

Suchcompetitive analysisis an important branch of the
theory of algorithms.

17

