
CMPSCI611: Three Divide-and-Conquer ExamplesLecture 2

Last lecture we presented and analyzedMergesort, a sim-
ple divide-and-conquer algorithm. We then stated and
proved theMaster Theorem, which gives the big-O run-
ning time for divide-and-conquer algorithms with recur-
rences of a particular form:

If T (n) satisfiesT (n) = aT (n/b) + Θ(nα) andT (n) =
O(1) for n ≤ c , we letβ = logb a and then:

• If α > β, T (n) = Θ(nα)

• If α = β, T (n) = Θ(nα log n)

• If α < β, T (n) = Θ(nβ)

1



Mergesort had a recurrence ofT (n) = 2T (n/2) + Θ(n),
and thus a solution ofT (n) = Θ(n log n). Today we will
see examples of all three cases of the Master Theorem.

Note that when we have a recurrence of this form, with a
Θ bound on the time to integrate the solutions, the result
is aΘ bound on the worst-case time taken bythis algo-
rithm. It provides only a big-O bound on the worst-case
time needed tosolve the problem, since there might be a
different, faster algorithm.

Sometimes our analysis gives us only a big-O bound on
the time to integrate the solutions, but the Master Theo-
rem then still gives us a big-O result.

To get aΘ bound on the time for theproblem, we need a
lower bound argument. For the sorting problem, with the
right assumptions, we have a matching lower bound, but
usually we don’t have one.

2



Matrix Multiplication: If A andB are eachn by n ma-
trices over anyring, theirproductC = AB is defined by
the rule:

Ci,j =
∑
k

Ai,kBk,j

There is an algorithm to computeC that should be ob-
vious from this definition (too obvious to require code).
For each of then2 entries ofC, for eachk, we multiply
Ai,k by Bk,j, requiringn scalar multiplications. Then we
add upn products for each entry ofC. All in all we use
exactlyn3 multiplications andΘ(n3) (actuallyn3 − n2)
additions, forΘ(n3) total operations.

We can’t hope for fewer than2n2 operations because each
entry of A or B might affect the answer and must be
looked at in the worst case. Surprisingly, though, we can
do better than the standard algorithm!

3



Before we present subcubic matrix multiplication, we
will warm up with a related but simpler problem,

Multiplying Integers: Our input is twon-bit integers
a = ∑

i ai2
i andb = ∑

i bi2
i, given as sequences of bits.

Our output is the integerc = ab, given in the same for-
mat. Note thatc has at most2n bits.

Note: Most of the integers we see in daily life may be
multiplied in a single step. But the algorithm we are
about to present can be adapted to multiply integers stored
in n wordsof fixed size, in a format like that used for the
BigNum class in Java. For the time being we will count
how manybit operationswe use to multiply – if we have
words ofO(1) bits each a word operation is only an ab-
breviation forO(1) bit operations anyway.

Adding integers is easy inO(n) bit operations.

The standard algorithm computesc = ∑
i,j aibj2

i+j by
taking the AND of eachai with eachbj, shifting the result
into position, and adding the results inΘ(n2) total time.

4



Divide and Conquer? If we write a = a12
n/2 + a2 and

b = b12
n/2 + b2, then we can expressab in terms of these

n/2-bit numbers as

a1b12
n + (a1b2 + a2b1)2

n/2 + a2b2.

We can thus multiply then-bit numbers by carrying out
four multiplications ofn/2-bit numbers, plus a constant
number of additions. Our recurrence isT (n) = 4T (n/2)+
Θ(n), fitting the Master Theorem witha = 4 andb = 2.
But sinceβ = log2 4 = 2, this algorithm also takesΘ(n2)
time, the same as the standard algorithm.

5



A Trick: There are three coefficients we need to com-
pute, and we originally thought of four binary products
we could use, along with additions, to get them. But
these four binary products are not linearly independent.
It turns out that if we compute just three binary products:

P1 = a1b1

P2 = a2b2

P3 = (a1 + a2)(b1 + b2)

then the three coefficients that we want areP1, P3 −
P1 − P2, andP2. Thesethreemultiplications ofn/2-bit
numbers, together with a constant number of additions
(a larger constant number, note), allow us to multiply the
n-bit numbers. The new recurrence is:

T (n) = 3T (n/2) + Θ(n)

which has solutionT (n) = Θ(nlog2 3) = Θ(n1.59...).

There is a way to use the Fast Fourier Transform algo-
rithm from next lecture to multiply twon-bit numbers
even faster, inΘ(n log n log log n) time. The obvious lower
bound on the time needed is onlyΩ(n), the time needed
to read all the input.

6



Back To Matrix Mulitiplication:

Just as we could write ann-bit integer as a shifted sum
of two n/2-bit integers, we can write ann by n matrix as
a 2 by 2 matrix whoseentriesaren/2 by n/2 matrices.

A =

 A11 A12

A21 A22



B =

 B11 B12

B21 B22



AB =

 A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22



Simple Divide-and-Conquer:

There areeightproducts ofn/2 by n/2 matrices, plus a
constant number of additions of such matrices. (Note that
two n by n matrices may be added inΘ(n2) time.)

The recurrence here isT (n) = 8T (n/2) + Θ(n2), which
has solutionT (n) = Θ(n3) becauseβ = log2 8 = 3. So
this is no better than the standard algorithm.

7



Strassen’s Trick:

We want four particular sums of products of the eight
n/2 by n/2 matrices. There are a variety of ways we
might multiply one sum of matrices by another, beyond
the eight simple combinations we just used. Strassen was
able to find a set ofsevenproducts of sums that could be
used to form all four necessary coefficients:

P1 = (A11 + A22)(B11 + B22)

P2 = (A21 + A22)(B11)

P3 = (A11)(B12 −B22)

P4 = (A22)(−B11 + B21)

P5 = (A11 + A12)(B22)

P6 = (−A11 + A21)(B11 + B12)

P7 = (A12 − A22)(B21 + B22)

The product matrix is expressed as follows:

AB =

 P1 + P4 − P5 + P7 P3 + P5

P2 + P4 P1 − P2 + P3 + P6



8



The new recurrence isT (n) = 7T (n/2)+Θ(n2). The new
β is log2 7 = 2.81 . . ., so the solution ofT (n2.81...) is in-
deed subcubic. There are more recent algorithms that are
(at least theoretically) even faster than Strassen – the cur-
rent champion is by Coppersmith and Winograd (1990)
and takes timeO(n2.376...).

CLRS, Chapter 28, has more on how Strassen may have
gone about finding his solution.

9



Is Strassen’s algorithm practical? Atsomevalue ofn, it
ought to be, because a function that iso(n3) will eventu-
ally overtaken by one that isΘ(n3) asn increases. When
this happens depends, of course, on the exact constants
and lower-order terms in the two time functions. Further
complications come from details of the implementation.
For example, copies from one location to anotherwithin
the RAMof the computer are always much faster than
those that involve the external memory. Once matrices
get too big to fit in RAM, things slow down dramatically.

As the notes say, “different sources quote quite different
numbers for this tradeoff point, ranging fromn = 8 to
n = 100”. Of course, when we use Strassen we will ac-
tually use a hybrid algorithm that uses Strassen’s trick to
subdivide the matricesonly until they are small enough
that the standard algorithm is faster. Similarly, a Merge-
sort algorithm might use another general sorting algo-
rithm or even special-purpose code on sufficiently small
lists.

10



The Closest Pair Problem:

Our final example of a divide-and-conquer algorithm comes
from computational geometry. Suppose that we are given
n points in a plane, each given by a pair of real (actually
floating-point) numbers. We want to find which of the

(
n
2

)
pairsof points has the shortest distance between them.

We can do this inΘ(n2) time by computing the distance
for each of the pairs and taking the minimum of all these
distances. There is a clearΩ(n) lower bound on the time
needed, because if we never look at one of the points it
might turn out to be very close to another point.

We’ll use a recursive algorithm to solve this problem in
time O(n log n). The base case ofn ≤ 2 is easy, as we
have at most one pair to check.

11



Dividing the Problem in Half:

The basic idea will be to draw a vertical line that hasn/2
points on each side of it. Once we do this, we can apply
the algorithm recursively to find the closest pair on each
side. But there are a number of issues left after we have
this idea:

1. How do we find the correct vertical line, and how long
does it take?

2. What if the closest pair involves one point on each
side of the line? We don’t want to check all the pairs
that cross the line, because there aren2/4 of them!

The first problem is not so bad – we sort the points by
x-coordinate, takingΘ(n log n) time, and pick the me-
dian coordinate as the position of our line. Any points
exactly onthis line can be arbitrarily assigned to one side
or the other to make the sides have exactlyn/2 points
each (again we assume thatn is a power of two).

12



Checking Pairs that Cross the Line:

The key insight is that weonly careabout a pair that
crosses the line if its distance is smaller than the smallest
distance thatdoesn’tcross the line. LetδL be the smallest
distance found by the recursive call to the left, andδR the
smallest distance found on the right. Letδ be the min-
imum of these two. The only points that could be part
of interestingline-crossing pairs are those withinδ of the
line.

We can find this set of points, calledPM , easily (inO(n)
time) from the list of points sorted byx-coordinate. Of
course, there is no reason why most or all of then points
might not be inPM , so we need a better idea than just
checking all the pairs of points inPM .

13



But a point inPM can be close to another point inPM

only if they are close in theiry-coordinateas well as in
their x-coordinate. If we sortPM by y-coordinate, we
only have to check the distance of each point to thenext
few points in they list. This is because points inPM

on the same side of the vertical line are guaranteed to
be at leastδ apart, so only so many can fit into the2δ
by δ box in PM just above any given pointx. (We only
checkabovex because we will cover the pairs wherex is
the higher point when we check the box above the other
point.)

There’s a diagram on page 16 of the printed notes that
shows (or would show, if the captions were readable) that
there might be as many assevenpoints in this box to
check for distance tox.

This means that even if there areΘ(n) points inPM , once
we sort them we have to check onlyO(1) pairs for each,
so we can do this inO(n) time.

14



What’s the recurrence resulting from this?

To find the closest pair, we:

1. Sorted the points byx-coordinate –O(n log n) time

2. FoundδL andδR – 2T (n/2) time

3. FoundPM – O(n) time

4. SortedPM by y-coordinate –O(n log n) time, and

5. Checked each point inPM against its close neighbors
– O(n) time.

This gives usT (n) = 2T (n/2) + O(n log n), which is
not a case of the Master Theorem but (as you’ll show on
HW#1) has a solution ofT (n) = O(n log2 n). This is
much better thanO(n2), but we can actually do a little
better.

15



If we sort the entire set of pointsonceby y-coordinate at
the beginning of the algorithm, this costs usO(n log n)
time up front. But then we can sort anysubsetof the
points inO(n) time, by moving down the sorted list and
picking out the points we want. This gives us:

T (n) = 2T (n/2) + Θ(n)

which we know has solutionT (n) = Θ(n log n). Adding
in the time for the presort keeps us atΘ(n log n). This is
actually the best possible running time for this problem
– the lower bound is the sort of thing discussed in the
computational geometry course taught by Profs. Brock
and Streinu.

16


