
CMPSCI611:Approximations to NP-Hard Problems Lecture 19

There is a sense in which allNP-complete decision prob-
lems are the same. IfA andB areNP-complete, it fol-
lows thatA ≤p B, and hence that we cantranslateany
instance of problemA into an instance of problemB
with the same answer. Thenatural NP-complete prob-
lems (ones that are posed for their own sake, rather than
being constructed as potential counterexamples) have the
additional property of beingisomorphic. This means that
the poly-time reduction can be made to be one-to-one
and onto, and makes the problems in this sense simply
re-encodings of each other.

But there are ways to look atNP-complete problems that
make them different. In this section of the course our
main concern will beapproximation of optimization prob-
lems – search problems where our goal is to get a solution
that is within some fraction of the best possible solution.
In some cases we will find good general approximation
algorithms, and in others we will be able to prove that the
approximation problem is itselfNP-hard. We will define
several categories of optimization problems based on the
difficulty of approximating them.

1



First, though, I want to give a brief example of a differ-
ence betweenNP-completedecisionproblems, one that
opens up an important research area in the theory of al-
gorithms we won’t have time to explore, calledfixed-
parameter intractability . Consider the CLIQUE and
VERTEX-COVER problems. Each takes as input a pair
(G, k), whereG is an undirected graph andk is a number,
aparameter to the problem, giving the size of the clique
or vertex cover we seek.

Recall that the reduction from CLIQUE to VERTEX-
COVER takes a pair(G, k) to a pair(H, n − k) where
H is the complement graph ofG andn is the number of
vertices inG or H. It is therefore not so surprising that
the behavior of these two problems forparticular values
of k might be different.

Consider the case wherek is a constant. If we are look-
ing for ak-clique inG, the obvious way to proceed is to
check all

(
n
k

)
sets of sizek to see whether any of them is

a clique. This takesO(nk) time, which is bad for all but
very small values ofk. There is no known algorithm that
is appreciably faster, and there are theoretical reasons to
think that none exists.

2



By contrast, consider the case of VERTEX-COVER where
k is a constant. If there is a vertex cover of sizek, it
should be clear that there can be at mostk(n − 1) edges
in the graph, because every vertex has degree at mostn.
So our first move is to count the edges until or unless we
get pastk(n− 1) – if we do we return ”false”.

Supposing it is still possible that the vertex cover exists,
we consider an arbitrary edge(u, v). This edge must be
covered, so eitheru or v must be in the vertex cover. Ifu
is in it, there must bek − 1 other vertices that cover the
edges that aren’t incident onu. If v is in it, there must be
k − 1 vertices to cover the edges not incident onv.

3



We can thus apply arecursivealgorithm to the two graphs
G \ {u} andG \ {v}, looking for a vertex cover of size
k−1 in either. Each recursive call will begin by counting
the edges in its graph, rejecting if there are more than(k−
1)(n−2), and otherwise picking an edge and making two
calls on thek − 2 version of the vertex cover algorithm.
If we reach a subcase with no edges, or where we ask for
a vertex cover of size0, we accept.

We make up to2k recursive calls, each of which takes
O(kn) time if we considerk as a parameter rather than a
constant. The total time is thusO(2kkn), which islinear
in n for any particular value ofk. In particular, look at the
two time functions for CLIQUE and VERTEX-COVER
whenk = 10. As far as we know, deciding whether a10-
clique exists takesO(n10) time, while deciding whether a
10-vertex cover exists takesO(10240n) time, much better
for largen.

4



We need to study the variety amongNP-complete prob-
lems because we need to know what to do when we are
faced with anNP-complete problem.

• It may be that what we really want to solve is a tractable
subcase of anNP-complete problem. Remember that
the SUBSET-SUM problem ispseudopolynomial–
if the numerical parameters are polynomially bounded,
then so is the running time. Unfortunately, mostNP-
complete problems arestrongly NP-complete, mean-
ing that even with small numbers they are not inP un-
lessP = NP. An example is BIN-PACKING, where
we have integer-sized items and bins and want to fit
the items into a minimum number of bins.

• Sometimes there is a probability distribution on the
inputs to the problem, and the average-case time turns
out to be polynomial even though the general prob-
lem isNP-complete. But this is a relatively rare phe-
nomenon, and one that has to come from nature – as
far as we knowNP-complete problems remain diffi-
cult for randomized algorithms.

5



• If we can’t expect the exact optimum, we may be able
to approximate its performance. The happiest situa-
tion is when we have an algorithm that will get us
to within as close a multiplicative factor as we like
and still be polynomial (with time still depending on
the error bound) – this is called apoly-time approxi-
mation scheme). But this isn’t always possible – we
want toclassify NP-complete optimization problems
by how hard they are to approximate.

6



CMPSCI611: Approximating VERTEX-COVER Lecture 19

Let’s now look at approximation algorithms for a partic-
ular NP-hard optimization problem, VERTEX-COVER.
We are given an undirected input graphG and want to
find a vertex cover ofG that is as small as possible. We
know that it isNP-hard to get the exact size of the small-
est vertex cover, but maybe we can get a reasonably small
one.

Let’s first consider a natural greedy approximation algo-
rithm. We’ll choose a vertex of maximum degree in the
graph, thereby covering as many edges as possible with
one vertex. Then we recurse on the remaining graph, un-
til all the edges are covered.

The Adler notes give an example where this algorithm
does badly. We have a graph withO(m log m) vertices
arranged inm columns. The first column hasm vertices,
the next (the floor of)m/2, the next (the floor of)m/3,
and so on. Columns(m/2) + 1 throughm have one node
each. By the harmonic number estimate we saw earlier,
the total number of nodes isO(n log n).

7



Now we have to define edges for our graph. Every vertex
in columnk hask edges to distinct vertices in column
1, and these are the only edges in the graph. Because
of the floor operation on the size, some of the vertices
in column1 don’t get an edge from every other column.
But the firstm/2 vertices in column1 have an edge from
every other column and thus have degreem− 1.

Since every edge involves a vertex in column1, there is
a vertex cover of sizem, consisting of every vertex in
column 1. What does the greedy algorithm do on this
graph? It first takes the single vertex in columnm, which
has degreem. After this is gone, the vertices in column
1 all have degree at mostm − 2, so the algorithm takes
the vertex in columnm − 1. In the same way, there is
always a vertex in the last column whose degree is one
greater than that of any vertex in column1. The greedy
algorithm does not get all the edges until it has killed
every vertexexceptthe first column.

We can measure the performance of the algorithm by di-
viding its score, the number of vertices it uses, by the op-
timal score, the number of vertices in the optimal vertex
cover. Thisapproximation ratio is Ω(m log m)/m =
Ω(log m). We’ll normally be much happier with a con-
stant approximation ratio, some number greater than 1.

8



Why do we express the ratio inΩ terms rather than big-
O? We haven’t ruled out the possibility that this greedy
algorithm isn’teven worseon some other graph.

Let’s now look at a better method of approximating the
minimum vertex cover. We already know something about
matchingsin an undirected graph – sets of edges that are
vertex-disjoint. Using network flow, we can find a max-
imum matching in a bipartite graph, and by another al-
gorithm we didn’t present, a maximum matching in any
undirected graph can be found in polynomial time.

But to approximate vertex cover, it suffices to find amax-
imal matching, which is easy to do by a greedy algorithm
in linear time. Simply take any edge(u, v), add it to
the matching, and then remove verticesu andv from the
graph, together with any other edges they touch. Even-
tually we will be left with an empty graph, and we then
know that any other edge in the original graph shares a
vertex with one of our matching edges.

9



Let M be the set ofm edges in our maximal matching
and consider the setC of all 2m vertices touched by those
edges. We claim thatC is a vertex cover. Any edge in
the original graph must contain at least one vertex inC,
or we could have added it to the matching and thusM
would not be maximal. So we have a vertex cover with
2m vertices.

How small could the minimum vertex cover be? To cover
an edge(u, v) in the matching, a set must contain either
vertexu or vertexv. No vertex can cover more than one
of the edges inM , so a valid vertex cover must have at
leastm edges. ThusC is within a factor of two in size of
the minimum vertex cover.

If the input graph isitselfa matching, then the only max-
imal matching is the entire graph. In this case the perfor-
mance ratio of the algorithm is 2 and no better, because
it uses2m vertices and there is a vertex cover with only
m vertices, consisting of one vertex from each edge.

In fact this is close to the best approximation algorithm
known for the minimum vertex cover problem. Hastad
has proved that it isNP-hard to approximate minimum
vertex cover within a ratio of 1.1666 or below.

10



CMPSCI611: Approximating MAX-IND-SET Lecture 19

We’ve seen that while VERTEX-COVER and IND-SET
are very similar as decision problems, the behavior of
their parameters is quite different. When we consider the
two as optimization problems and view the difficulty of
approximating them, we find further differences.

First recall the direct relationship between the two prob-
lems. An undirected graphG with n vertices has a vertex
cover of sizek iff it has an independent set of sizen− k.
This is because the complement of any vertex cover must
be an independent set, and vice versa.

We can find a vertex cover that is at most twice as big as
the optimal one. This gives us a sort of approximation for
the optimal (maximum) independent set, but (as it turns
out) not a very good one.

11



Consider a graph with2k+1 vertices ink connected com-
ponents:k − 1 of size two, with single edges, and one of
size 3 (a path of length 2). The minimum vertex cover
has sizek, taking one vertex from each of the size two
components and the middle vertex of the 2-path. Thus
the maximum independent set has sizek + 1, with one
vertex from each 1-path and the two endpoints of the 2-
path.

How well does our approximation algorithm do in this
case? It finds a maximal matching, which must consist
of thek − 1 1-path edges and one of the edges of the 2-
path, fork edges in all. It takes the2k endpoints of these
edges to get a vertex cover of size2k, exactly double the
size of the minimum vertex cover.

But the new independent set has size only 1! This is
enormously worse than the maximum independent set of
size k + 1 – not within any constant factor at all ask
increases. The problem is that the error, which was com-
parable to the optimal score in the vertex cover case, is
much larger than the algorithm’s score in the independent
set case even though it is the same set of vertices.

12



So the VERTEX-COVER and MAX-IND-SET optimiza-
tion problems have very different behavior with respect
to approximation. Wecan, however, have a mapping be-
tween problems that preserves the optimization proper-
ties. Remember the reduction from IND-SET to CLIQUE
or vice versa, which mapped(G, k) to (H, k) whereH
was the complement graph ofG. The same mapping
from G to H takes instances of the optimization prob-
lem MAX-CLIQUE to instances of MAX-IND-SET, and
vice versa.

Here an approximate solution to one optimization prob-
lem onG maps to an equally good solution to the other
problem onH, because our mapping preserves the qual-
ity measure of any solution exactly. This problem is usu-
ally called MAX-CLIQUE in the literature, and is known
to beNP-hard to approximate even within a factor ofnε

for some positive constantε.

13


