
CMPSCI611: Three Selection Algorithms Lecture 15

Today we will look at three linear-time algorithms for
the selectionproblem, where we are given a list ofn
items and a numberk and are asked for thek’th smallest
item in a particular ordering. All three arecomparison-
basedalgorithms, in that the only operation allowed on
the items is to see which of two comes first in the order-
ing. Selection is also calledmedian-finding because the
hardest case comes whenk = n/2 and we are asked for
the middle element in the ordering.

Of course sorting the elements gives a solution to the se-
lection problem inO(n log n) time, but we hope to do
better. It’s easy to show that ifk = 1 or k = n, then
n−1 comparisons are necessary and sufficient. Two clas-
sic exercises extend this result – in each case the upper
bound is easy and the lower bound challenging:

• If n is even,3n/2− 2 comparisons are necessary and
sufficient to solveboththek = 1 andk = n problems.

• If n = 2k, thenn+log n−2 comparisons are necessary
and sufficient to solve thek = 2 problem. (Solving
k = 2 means that you also know the answer tok = 1).

1



Our first selection algorithm is a simple adaptation of
Quicksort, which we’ll callQuickselect. Given then
elements, we choose a pivot uniformly at random, split
the elements into those greater than and those less than
the pivot, and recurse onone ofthe two sets. Which set
of course depends onk and on the size of the sets – if
there aret elements less than the pivot, we recurse on
the smaller-than set ifk ≤ t, simply return the pivot if
k = t+1, and recurse on the greater-than set ifk > t+1.

If we are very unlucky in our pivots, we could wind up
making

(
n
2

)
comparisons (for example, supposek = 1

and our random pivot is always the greatest remaining
element). But on the average we will do much better than
that – let’s compute an upper bound on the average-case
number of comparisons.

A nice simplifying assumption is to assume thatk always
winds up in the larger of the two sets. This is a conser-
vative assumption, because we will always do better if
k is in the smaller set or if it turns out to be the pivot.
And since we will get a linear upper bound and we know
there is a linear lower bound on the number of compar-
isons, the assumption isn’t too conservative.

2



If we split the input using a uniformly chosen random
pivot, what is the distribution of the size of the larger set?
There are two choices, 1 andn, that make the larger set
sizen− 1. There are two choices,2 andn− 1, that make
it sizen − 2, two that make itn − 3, and so forth until
finally there is one choice making it(n − 1)/2 (if n is
odd) or two making itn/2 (if n is even).

This gives us a recurrence for the expected time:

T̄ (n) =
2

n

n−1∑
i=n/2

T̄ (i) + O(n).

This is the recurrence for evenn – the one for oddn is
similar.

3



It’s not hard to provēT (n) = O(n) from this recurrence.
If we write the finalO(n) as “dn”, we can look for a
constantc such that we can provēT (n) ≤ cn:

T̄ (n) ≤ 2

n

n−1∑
i=n/2

T̄ (i) + dn

≤ 2

n

n−1∑
i=n/2

ci + dn

≤ 2

n
(n/2)c(3n/4) + dn

= (3c/4 + d)n

and makingc = 4d allows us to complete an inductive
proof.

Measuring in terms of the number of comparisons, “d”
above will be about1, giving us an upper bound of about
4n on the number of comparisons. Accounting for the
possibility ofk falling in the smaller of the two sets would
presumably give us a somewhat smaller constant.

4



It’s a natural theoretical question whether selection can
be carried out indeterministiclinear time. We’ll present
the first solution, from 1973, not because it is of any prac-
tical use but because it gives an interesting analysis.

The algorithm proceeds as follows:

• Divide then items into groups of five.

• Sort each group and findits median.

• Recursively find the median of these medians,m

• Usingm as a pivot as in Quickselect, divide the set in
two.

• Recursively select the element we want from one of
these two sets.

The non-recursive parts of this algorithm pretty clearly
take linear time. The interesting analysis will be of the
recursive parts.

5



• Divide then items into groups of five.

• Sort each group and findits median.

• Recursively find the median of these medians,m

• Usingm as a pivot as in Quickselect, divide the set in
two.

• Recursively select the element we want from one of
these two sets.

If T (n) is the worst-case time to select fromn elements
for anyk, it will take us onlyT (n/5) time to select the
median of the set-of-five medians once we have them all.

The key point here is that this elementm is guaranteed
to be a pretty good pivot. Let’s look at this carefully.
About half the elements are in groups of five whose me-
dian is less thanm. At least three element in each of
these groups, then, the median and the two smaller ones,
are smaller thanm – a total of30% of the elements. Sim-
ilarly, half the elements are in groups whose median is
greater thanm, and at least three-fifths of these (30% of
the total) are greater thanm.

6



• Divide then items into groups of five.

• Sort each group and findits median.

• Recursively find the median of these medians,m

• Usingm as a pivot as in Quickselect, divide the set in
two.

• Recursively select the element we want from one of
these two sets.

The last recursive call to Quickselect, then, applies to
a set whose size is at most0.7n and thus takes at most
T (0.7n) comparisons. Thus we have the following recur-
rence:

T (n) ≤ T (0.2n) + T (0.7n) + O(n),

which has solutionT (n) = O(n). More specifically, if
the finalO(n) of the recurrence is replaced bycn, we can
prove by induction thatT (n) = 10cn is a solution to the
recurrence.

The constant from this recurrence is actually quite bad,
because “c” in the discussion above is about 3 (the sorts
of five take about2n and the split aboutn) and the final
answer is10cn. But there have since been more compli-
cated deterministic algorithms with3n comparisons.

7



Our third median algorithm, calledLazySelectby Mot-
wani and Raghavan, actually has an average case perfor-
mance of1.5n + o(n) comparisons. It has been proved
that no deterministic algorithm can succeed with fewer
than2n comparisons in the worst case, so here is a case
where a randomized algorithm is provably better.

LazySelect finds thek’th smallest element from a totally
ordered setS, of sizen, as follows:

• Choosen3/4 elements uniformly and independently,
with replacement, fromS.

• Sort this multisetR completely.

• Let t = kn−1/4. Let a be thet −
√

n’th smallest
element ofR, and letb be thet +

√
n’th smallest.

• Compare each element againsta and/orb to find the
elements that fall between them, and how many fall
beforea and afterb,

• If the k’th smallest element is guaranteed to fall be-
tweena andb, and there are no more than4n3/4 ele-
ments between them, sort those elements and find the
target.

• If the conditions above are not true, repeat the entire
algorithm with independent choices.

8



First let’s show that the expected number of comparisons
used by this algorithm is1.5n + o(n) in the case that it
doesn’t give up and repeat. The two sorts ofO(n3/4) el-
ements, using our favorite deterministicO(n log n) algo-
rithm, each takeO(n3/4 log n) which iso(n). If we com-
pare each element ofS to botha andb, this is2n compar-
isons. But we know that either nearly half the elements
are less thana or nearly half are greater thanb, and in
the no-repeat case we can tell which, based onk. Sup-
posea andb are both in the lower half ofS – we compare
each element againstb first, and againsta only if it is less
thana. This will sort the elements into three groups with
1.5n + o(n) comparisons.

If the algorithm does not repeat, it is correct. All we need
to do to show the randomized algorithm correct, then,
is to show that it has at least a constant probability of
success. Then, withO(1) expected repetitions, we will
get a confirmed correct answer. In fact we’ll show that
the probability of failure on a single run of the algorithm
is much smaller, onlyO(n1/4).

9



When we pick elements forR, each has a probability of
k/n of being less than or equal to our target element, the
k’th smallest inS. Thus the expected number of such
elements inR is n3/4(k/n) = kn−1/4 = t. The only way
that the target willfail to be betweena and b is if this
number is smaller thant −

√
n or greater thant +

√
n.

We need to know how probable this might be.

The other way the algorithm could fail is if there are too
many elements betweena andb. But the only way this
could happen is either the number less thana, or the num-
ber less thanb, is sufficiently far from the expected num-
ber. We’ll put an upper bound on this probability as well.

10



A binomial random variable is 1 with some probabilityp
and 0 otherwise. We noted before that its mean isp. It’s
distance from the mean is thus1 − p with probabilityp
andp with probability1−p, so its variance (the expected
value of(X − µ)2) is p(1 − p)2 + (1 − p)p2 = p(1 − p),
a constant depending onp that is maximized at1/4 when
p = 1/2.

If we haven independent, identically distributed (i.i.d.)
binomial random variables, each with probabilityp, it is
clear that their sum, as a random variable, has meanpn.
Because variances of independent random variables add,
the variance of the sum isp(1 − p)n, at mostn/4. (In
fact pairwise independence of a set of random variables
is sufficient to imply that their variances add.)

Let’s apply this to the median algorithm. The probability
that one element ofS, chosen uniformly at random, is
less than or equal to thek’th element isp = k/n. OurR
is made fromn3/4 independent choices of this kind. The
number of elements ofR that are less than or equal to the
k’th element ofS is thus a random variable with mean
pn3/4 = kn−1/4 = t and variancep(1− p)n3/4 ≤ n3/4/4.

11



Recall that in the last lecture we proved:

Markov’s Inequality: If X is a non-negative random
variable with meanµ, the probability thatX ≥ α is at
mostµ/α.

Chebyshev’s Inequality: If X is a random variable with
meanµ and varianceσ2, then the probability that|X −
µ| ≥ kσ is at most1/k2.

So what is the chance that the number of elements inR
less than or equal to thek’th element ofS, which is ex-
pected to bet and has variance at mostn3/4/4, is more
than

√
n away fromt? The standard deviation of the ran-

dom variable isn3/8/2, and by Chebyshev the chance of
being more than2n1/8 standard deviations away from the
mean is at most1/(2n1/8)2 = n−1/4/4 = O(n−1/4).

12



The target element ofS will be betweena andb unless
this happens, so the only other way the run of the algo-
rithm could fail is if there are too many elements ofS
betweena and b – more than twice the expected num-
ber of2n3/4. We can bound this probability by a similar
argument to that above.

For example, letu be element numberk−2n3/4 of S, and
let v be element numberk + 2n3/4. The range between
a andb can be too big only ifa < u or v < b. We can
bound either of these probabilities. Fora < u to be true,
the number of elements ofR that are less thenu must
be less thant −

√
n. But this number is expected to be

t − 2
√

n, and as we have seen the chance that it is
√

n
away from its mean isO(n1/4). Similarly there is only an
O(n1/4) chance thatb is greater thanv.

The event that a single run of the algorithm fails to find
the target element, then, is the union of three events each
of which has probabilityO(n−1/4) and thus has probabil-
ity O(n−1/4) itself. The expected number of runs until
we find a solution is1 + O(n−1/4), and thus the expected
total number of comparisons, like the expected number
for one run, is1.5n + o(n). As we mentioned above, this
is faster than a proven lower bound on deterministic al-
gorithms for selection.

13



CMPSCI611: Chernoff Bounds Lecture 15

We conclude this lecture with a look at another way to
show lower bounds on the probability thatcertain ran-
dom variables are far away from their mean. TheCher-
noff bounds, as we state them here, apply to binomial
random variables (sums of i.i.d. 0-1 variables with prob-
ability p of being 1).

As we said, the expected value of the sum ofn trials
with probability p is np. The Chernoff bound says that
the probability that this sum is a constant fraction of the
mean away from the mean. Specifically, for any positive
δ the probability of being greater than(1 + δ)np is:

 eδ

(1 + δ)1+δ


np

.

If p andδ stay constant, this probability goes down ex-
ponentially withn. (Remember thatex is about1 + x,
making the term inside the parentheses less than1.)

14



We won’t prove this bound here – you can look in Motwani-
Raghavan if you’re interested. There are two variants of
the Chernoff bound that are particularly useful ifδ ≤ 1:

• The probability of being at most(1− δ)np is at most
e−δ2np/2.

• The probability of being at most(1 + δ)np is at most
e−δ2np/3.

Let’s use this to analyze the chance that a baseball team’s
season record will be significantly different from what
the team’s true ability would predict. The Kansas City
Royals were the worst team in major league baseball in
2005, winning only 56 out of 162 games, about 35%.
Let’s suppose that each of the Royals’ games was an in-
dependent binomial trial, with probabilityp = 0.35 of
winning. What is the probability that the Royals would
win at leasthalf their 162 games?

15



Markov’s Inequality tells us that the chance of winning
10/7 as many games as expected can be no more than
7/10, a not very useful bound. Since the variance ofn
such trials isn(0.35)(0.65) or about0.22n, the standard
deviation is about0.47

√
n, or about6 with n = 162.

The winning season would require the sum to be about
162(0.5 − 0.35)/6 or about4 standard deviations higher
than the mean. Chebyshev’s Inequality tells us that the
chance of this is at most1/16 or about6%.

What does the Chernoff bound tell us here? We want to
bound the probability that the sum is at least10/7 times
the mean, or1 + δ times the mean withδ = 3/7. The
last version of the bound says that this probability is at
moste−δ2np/3, or e−(3/7)2(162)(0.35)/3 or aboute−3.47, which
is about3%.

In this example the Chernoff bound was only twice as
strong as the Chebyshev bounds. But this is highly de-
pendent on the constants involved. In the Adler notes he
does the same calculation with a less realisticp = 0.25
and gets about 2% for Chebyshev and about10−6 for
Chernoff.

16



We should briefly mention thenormal approximation
to the binomial. By a general result called theCentral
Limit Theorem , any sum ofn i.i.d random variables be-
comes more and more closely approximated by anormal
random variable asn increases. The normal distribution
with a particular mean and variance has the familiar bell
shape. You can look up the probability, for any positivek,
that a normal random variable will be more thank stan-
dard deviations away from its mean. (For example, with
k = 2 it is about 95%.) Ask increases, this probability
decays exponentially withk.

In our baseball example, the chance of a normal random
variable being more than3.47 standard deviations larger
than its mean is about0.025% or 1 in 4000.

17



Our final example is thecoupon collector’s problem. As
in the last lecture, we havem balls each tossed indepen-
dently and uniformly inton bins. Here we want to know
how largem must be so that with high probability, each
bin has at least one ball.

Let Xi be the number of balls in bini. EachXi is a
binomial random variable withp = 1/n andm trials. The
expected number of balls ismp = m/n, and we want to
bound the probability of there being at most0 balls in the
bin. This can be analyzed with the second version of the
Chernoff bound withδ = 1:

Pr(Xi ≤ (1− δ)mp) ≤ e−δ2mp/2.

This simplifies toe−mp/2 = e−m/2n. If we letm be4n ln n,
then this becomese−2 ln n = 1

n2. This is the probability
that bini is empty afterm balls. The probability that at
least one of then bins is empty is no more thann times
this, or1/n.

So m = 4n ln n guarantees only a1/n chance of an
empty bin. A more sophisticated analysis shows that
with m = n ln n + o(n ln n), there is a small chance of
an empty bin, and withm = n ln n − o(n ln n) it is very
likely that there will be an empty bin.

18


