
CMPSCI611: Verifying Polynomial Identities Lecture 13

Here is a problem that has a polynomial-timerandomized
solution, but so far no poly-time deterministic solution.
Let F be any field and letQ(x1, . . . , xn) be a polynomial
of degreed in n different variables. We arenotnecessar-
ily given Q in its standard form as a sum of monomials!
It may be, for example, an arithmetic product of polyno-
mials which when computed out would be too big for us
to represent. All we are guaranteed is that we caneval-
uatethis polynomial given specific values of each of the
variables.

Our problem is to decide whetherQ is identically zero,
meaning that it is equal to the zero polynomial as a poly-
nomial (we write this “Q ≡ 0”). The problem would be
trivial if Q were in standard form but consider the poly-
nomial

(x1+x2)(x1−x2)+(x2+x3)(x2−x3)+(x3+x1)(x3−x1).

When we multiply this out, everything cancels and we
get zero. But in general, the computation of the standard
form of an expression of lengthn is not a polynomial-
time operation, simply because the output might take too
long to write down.

1

Testing for zero is really the same problem as takingtwo
polynomials in this form and testing whether they are
equal, sinceQ ≡ Q′ iff Q − Q′ ≡ 0. (If we can evaluate
both Q(z1, . . . , zn) andQ′(z1, . . . , zn), we can certainly
evaluate their difference.) We’ll also see an application
of this problem to graph theory in a bit.

The main idea ofSchwartz’ algorithm (used, for exam-
ple, by the Maple symbolic algebra system) is a simple
one. We choose a valuezi for each variablexi at random,
and evaluateQ(z1, . . . , zn). If Q ≡ 0, we will always get
an answer of 0. IfQ 6≡ 0, however, it seems reasonable
that we should get a “fairly random” answer, and thus we
are likely to get a nonzero result, which will prove that
Q 6≡ 0. It is possible for afunction to be zero most of
the time without being identically zero, of course, but we
will show that apolynomialcannot do so, at least over
an infinite field or a field larger than the degree of the
polynomial.

2

One round of Schwartz’ algorithm proceeds as follows:

• Choose a setS of m distinct field values.

• Choosez1, . . . , zn each uniformly fromS, indepen-
dently.

• EvaluateQ(z1, . . . , zn).

• If you get 0, return “true”, else return “false”.

As we said, ifQ ≡ 0 we will return “true” with proba-
bility 1. We need to analyze the probability of returning
“true” if Q is a nonzero polynomial of degreed – in fact
we will show that this probability isd/m. Sincem is
under our control (as long as the field has enough ele-
ments), we can use repeated trials of the basic algorithm
to reduce our error probability. If we ever get a result of
“false” we know it is correct, and if we get “true” many
times in a row we know that eitherQ ≡ 0 or we have
been very unlucky in our random choices – we’ll exam-
ine the question of how unlucky soon.

3

Let’s first consider the case wheren = 1, that is,Q is
a polynomial of degreed in a single variable. We know
something about such polynomials over any field – they
can have at mostd different roots. (Why? For each root
r, the linear polynomialx−r must divideQ. Over a field,
this means that the product of the linear polynomials for
each root must also divideQ, and the degree of this prod-
uct is exactly the number of roots.)It was pointed out in
class that “field” is not exactly the algebraic property we
need, though it is sufficient. The polynomials over a field
are not a field, for example, because you cannot divide.

For anyQ(x) of degreed and anyS of sizem, the great-
est chance of gettingQ(z1) = 0 is if Q hasd roots and all
of them happen to be inS. In this case the probability is
d/m, and in any other case it is less.

So we have established the bound we want in the special
casen = 1. We will prove thed/m bound forn variables
by induction onn. So we assume as inductive hypothesis
that for anyd and any polynomialR of degreed onn− 1
variables, the probability thatR(z1, . . . , zn−1) = 0 for
randomzi’s is at mostd/m.

4

Here is a bad argument that gets at the central idea of
the correct argument. Consider any sequence of values
z2, . . . , zn each chosen fromS. If we substitute these
values intoQ, we get a polynomialQ(x1, z2, . . . , zn) in
the single variablex1, and this polynomial has degree at
mostd. By our argument for the one-variable case, our
probability of gettingQ = 0 is at mostd/m. The proba-
bility that Schwartz’ algorithm fails is theaverage, over
all possible sequences(z2, . . . , zn), of the probability of
getting0 from that sequence. The average of thesemn−1

numbers, that are each at mostd/m, must itself be at
mostd/m.

Do you see the flaw in the argument? The probabil-
ity of a one-variable polynomial being0 is bounded by
d/m only if that polynomial is not itself the zero poly-
nomial! There is no reason that a particular sequence of
z values might not cause every coefficient ofQ to be-
come zero, and hence causeall the values ofz1 to lead to
Q(z1, . . . , zn) being zero.

5

So ourmn−1 individual probabilities arenot all bounded
by d/m, as some of them may be1. But our correct argu-
ment will put a bound on the number that are1, in order
to show that the average of all the numbers is really at
mostd/m.

Let’s rewriteQ as a polynomial inx1, whose coefficients
are polynomials in the othern − 1 variables:

Q = Qkx
k
1 + Qk−1x

k−1
1 + . . . + Q1x1 + Q0

Herek is the maximum degree ofx1 in any term ofQ.
Note that the degree of the polynomialQk(z2, . . . , zn)
must be at mostd − k, since there are no terms inQ
of degree greater thand.

How could a setting of(z2, . . . , zn) causeQ to become
the zero polynomial? A necessary, but not sufficient con-
dition, is thatQk(z2, . . . , zn) be zero. Butby our induc-
tive hypothesis, we know that the probability of this event
is bounded above by(d − k)/m, becauseQk has degree
at mostd − k andQk has onlyn − 1 variables.

6

Let’s look again at ourmn−1 individual probabilities. At
most a(d−k)/m fraction of them might be1. The others
are each at mostd/m, as we said, but we can do better.
Since the degree ofQ in the variablex1 is exactlyk, if
the values of thezi’s causeQ to become nonzero they
cause it to have degree at mostk. Thus the probability
that the choice ofz1 causesQ(z1, . . . , zn) to be 0 is at
mostk/m.

We have the average ofmn−1 probabilities, which is the
sum of those probabilities divided bymn−1. The sum of
the ones, divided bymn−1, is at most(d−k)/m. The sum
of the others, divided bymn−1, is at mostk/m because
each of them is at mostk − m. Our total probability is
thus at mostd/m, completing our inductive step and thus
our proof.

7

If we want to ensure that the probability of a wrong an-
swer is at mostε, then we can setm to be2d (assuming
that there are enough elements inF) and run the basic
Schwartz algorithmt = log2(1/ε) times. The only way
we can get a wrong answer is ifQ 6≡ 0 and each of the tri-
als “accidently” gave us a value of zero. Since each trial
fails with probability at mostd/m = 1/2, the probability
of an overall failure is at most2−t = ε, as desired.

Remember that settingt to 1000, or even100, drives the
error probability low enough that it becomes insignificant
next to other possible bad events like a large meteorite
landing on the computer during the calculation.

Remember also that thisamplification of probabilities
only works when the probability of success that we start
with is nontrivial, in particular at least an inverse polyno-
mial 1/p(n). If the probability of failure is1−f (n), then
the probability oft consecutive failures is(1 − f (n))t or
approximatelye−tf(n). For this to be a small probability,
tf(n) must be at least1, which is to say thatt must be at
least1/f(n).

8

When we studyNP-complete problems, we will see prob-
lems that have randomized algorithms with a very small
probability of success such as2−n. For example, in the
SATISFIABILITY problem our input is a boolean for-
mula inn variables and we ask whether there is any set-
ting of then variables that makes the formula true. It is
certainly possible that only one of the2n settings makes
the formula true, so that choosing a random setting has
only a 2−n probability of success. In this caset trials
would have at most at2−n probability of success, which
is vanishingly small for any reasonablet.

9

This analysis depended on the fact that the basic Schwartz
algorithm has onlyone-sided error– it can return “true”
when the right answer is “false”, but not vice-versa. Thus
repeated trials could fail only if each individual trial fails,
and we can multiply the individual failure probabilities to
get the overall failure probability.

If we have a randomized Monte Carlo algorithm with
two-sided error, meaning that no individual answer can
be trusted, the analysis of repeated trials is different. If
the answer is a bit and our failure probability issignifi-
cantlyless than1/2, at most1/2− 1/p(n) for some poly-
nomial p, it turns out that taking the majority result of
a sufficiently large polynomial number of repeated trials
is overwhelmingly likely to be correct. If the basic fail-
ure probability is something like1/2 − 2−n, however, a
polynomial number of repeated trials don’t help much.

10

CMPSCI611: Perfect Matchings Again Lecture 13

We can apply the Schwartz algorithm to verify polyno-
mial identities in a familiar setting – the problem of de-
termining whether a matching exists in a bipartite graph.
GivenG = (U, V, E), we can construct a polynomial that
is identically zero iffG doesnothave a perfect matching.
Thus the Schwartz algorithm can be used to either:

• Prove that the graph has a perfect matching, or

• Give us arbitrarily high confidence that it does not,
given enough independent trials of the basic algo-
rithm.

In the first case, the Schwartz algorithm willnot give us
a perfect matching in the graph, only assurance that it
exists.

11

The polynomial we must test is thedeterminant of a par-
ticular matrix. Given anyn by n matrix A, the determi-
nant is defined to be a particular sum of products of ma-
trix entries. For every bijectionσ from the set{1, . . . , n}
to itself (everypermutation), we form the product of the
entriesAi,σ(i) for eachi. Then we add these products to-
gether with coefficient1 if σ is aneven permutationand
−1 if it is an odd permutation.

(What do these last two terms mean? Any permutation
can be written as a product (composition) oftranposi-
tions, permutations that swap two elements and keep the
others fixed. The various products resulting in a given
permutation are either all odd or all even, and we call the
permutation odd or even accordingly. Ak-cycle, which
is a permutation that takes somea1 to a2, a2 to a3, etc.,
until it takesak to a1, is odd ifk is even and even ifk is
odd.)

12

So the determinant of a 2 by 2A is a11a22 − a12a21, and
the determinant of a 3 by 3A is

a11a22a33 − a11a32a23 + a12a23a31

−a12a21a33 + a13a32a21 − a13a31a22.

For generaln by n this definition does not give a good
way to compute the determinant because there aren! dif-
ferent permutations to consider. But there are two good
ways to compute it more quickly:

• The row operations ofGaussian eliminationdo not
change the determinant, except for swapping rows
which multiplies it by−1. So we can transform the
original matrix to anupper triangular matrix by a
polynomial number of these operations, counting the
number of times we swap rows. The determinant of
an upper triangular matrix is just the product of the
entries on its main diagonal.

• There is a general method, which we won’t cover
here, to express the determinant ofA as one entry
of the product of some matrices derived fromA. This
means that we can in principle find the determinant in
subcubic time, or find it quickly inparallel.

13

Both of these methods assume that we are carrying out
the matrix operation over a field in which entries can be
stored, added, and multiplied quickly. The integers, inte-
gers modulop, real numbers, and the complex numbers
are such fields, and polynomials overonevariable (even
O(1) variables) still allow these operations even though
they do not form a field. But as we have seen, simple
operations on polynomials over many variables may pro-
duce answers that we can no longer store or manipulate
easily.

Let’s return to the perfect matching problem on a bipar-
tite graphG = (U, V, E), where|U | = |V | = n. Define
the following n by n matrix A – the (i, j) entry is the
variablexij if there is an edge from vertexi of U to ver-
tex j of V , and0 otherwise. Look at the determinant
of this matrix. Any permutationσ represents a bijection
from U to V . If this bijection corresponds to a matching
in E, then every entryai,σ(i) is nonzero and the product
of these entries becomes a term in the determinant ofA,
with either a plus or minus sign.

14

Furthermore, if this term forσ appears in the determinant
it cannot be canceled by any other term. This is because
each term containsn variables, and no two contain ex-
actly the same variables. (Ifσ 6= τ , there must be some
variablexi,σ(i) that is notxi,τ(i).)

So givenG, we test whetherG has a perfect matching
by repeatedly choosing random values from some setS,
for eachxij, getting a matrix of field elements, and eval-
uating the determinant of that matrix. If we ever get a
nonzero value, a perfect matching exists, and if we keep
getting nonzero values we build our confidence that no
perfect matching exists.

15

How does the time of this algorithm compare with our
other methods to test for perfect matchings? The network
flow method takesO(e2n) = O(n5) time as we presented
it, or O(n3) by a more complicated algorithm that we did
not present. Finding the determinant (as we didn’t prove)
takesO(n3) by the standard method of matrix multiplica-
tion oro(n3) by faster methods. So the new method is not
clearly better for sequential machines, but it does allow
for a fast parallel algorithm where network flow, as far as
we know, doesn’t.

(Note finally that the Adler notes are quoting running
time in terms ofn as the whole input size, not the num-
ber of vertices. So they refer to the times of my “O(n3)”
algorithms as “O(n3/2)”.)

16

