
The Edmonds-Karp Heuristic

Our proof of the Max-Flow-Min-Cut Theorem immedi-
ately gave us an algorithm tocomputea maximum flow,
known as theFord-Fulkerson algorithm :

• Setf to be a zero flow.

• While the residual graph off contains an augmenting
path, find such a path, create a flow of the bottleneck
capacity along this path, and add that flow tof .

• Once there is no augmenting path, returnf .

Recall an important consequence of this algorithm:

Theorem: Any flow network whose capacities are all
integers has a maximum flow whose edge flows are all
integers.

This algorithm takes onlyO(e) time per phase, but the
number of phases is not clearly bounded by anything
smaller than|f |. We had an example where it was that
bad:

1

An example of bad behavior of unrestricted Ford-Fulkerson:

(a)
ˆ|\

1000 / | \ 1000
/ | \

/ 1| \
/ | V

(s) | (t)
\ | ˆ

\ | /
1000 \ | / 1000

\ | /
VV/
(b)

If we pick a first augmenting path froms to a to b to t,
the resulting residual network has a path froms to b to
a to t. We could then take a path througha andb, then
one throughb anda, and so on until we find the maximal
flow of size 2000 only after 2000 phases.

2

It turns out that we can avoid this bad behavior by using
the Edmonds-Karp heuristic: When we pick an aug-
menting path, we always pick one that is as short as pos-
sible in terms of the number of edges – so, for example,
we could just pick one by breadth-first search.

Theorem: If the Edmonds-Karp heuristic is used, then
the Ford-Fulkerson algorithm terminates with a maxi-
mum flow after at mostne phases.

Proof: For every vertexv, let d(v) be its distance from
s in the residual network. measured by the number of
edges. This will change as the algorithm runs because
the residual network changes. We first prove:

Lemma: As the algorithm (FF with EK) runs,d(v) never
decreases.

3

Proof of Lemma: If d(v) ever decreases on some step,
fix v to be a vertex where it does that is closest tos in
the new residual network. The shortest path froms to v
in the new residual network has lengthk and a last edge
(u, v), andd(u) did not decrease, so it wask − 1 in both
networks.

Now if (u, v) were in the old network,d(v) would have
beenk, but we are assuming thatd(v) decreased. So the
augmenting pathadded(u, v) to the residual network, by
killing an edge fromv to u. But this path in the old net-
work must have taken at leastk + 1 edges to reachv plus
another to reachu. This cannot be because Edmonds-
Karp requires that path to reachu by the shortest route,
which we know had lengthk − 1 in both networks.

4

Back to Proof of Theorem: We say that an edge(u, v)
is critical for the residual flow if the augmenting path
includes it and its capacity is the bottleneck capacity. So
a critical edge is one that disappears from the residual
network at the next step (replaced by its reversal).

We prove that between occasions when(u, v) is critical,
d(u) increases by at least 2. It follows that a given edge
may be critical at mostn/2 times, and thus that the to-
tal number of phases of the algorithm can be at most
(n/2)(e) = ne and the total running timeO(e2n).

Supposef is a flow for which(u, v) is a critical edge, and
suppose that(u, v) appearsagain in the residual graph
later, when the flowf ′ changes to the flowf ′′. Let k be
the value ofd(u) in f . Since the augmenting path inf is
a shortest path and goes throughu andv, we know that
d(v) = k + 1 in f . The augmenting path inf ′, that puts
(u, v) back in the residual graph, must include the edge
(v, u). Since it is also a shortest path, andd(v) is still at
leastk + 1, we know thatd(u) at this point must be at
leastk + 2.

5

Network-Flow Applications

The Max-Flow-Min-Cut Theorem and the existence of
integer-size flows give easy proofs of some classic results
in graph theory:

Hall’s Theorem: (early 1900’s) A bipartite graphG =
(U, V,E), with |U | = |V | = n, has a perfect matching
iff there doesnot exist a setA ⊆ U such that the set
Γ(A) = {v ∈ V : ∃u ∈ A : (u, v) ∈ E} is smaller than
A.

Proof: Set up a flow network with a nodes that has edges
of weight 1 to every node inU and a nodet that has edges
of weight 1from every node inV . Give every edge inE
weight 1. If this network has a flow of sizen, then it
has an integer flow, which must have edge values of 0 or
1, and the edges ofE used in this flow form a perfect
matching. If the network does not have such a flow, there
must be a cut(X,Y) of capacityn−1 or smaller. The set
X containss plus some nodes ofU andV . (Why must it
contain at least one node ofU?). LetA beX ∩ U . We
will show that|Γ(A)| < |A|.

6

We first modify the cut by taking any nodes inΓ(A) ∩ Y
and moving them toX. This doesn’tincreasethe capac-
ity of the cut – if y is such a vertex then the edge(y, t)
is the only one that now crosses the cut but didn’t before,
and at least one edge fromA to y no longer crosses the
cut.

Let |A| = k. Then − k edges froms to U \ A cross the
cut, as do the edges fromΓ(A) to t. This gives us at least
n− k + |Γ(k)| edges crossing the cut, so ifΓ(A) ≥ k we
have a contradiction because the capacity of the cut was
assumed to be at mostn− 1.

Here is another classic result in graph theory:

Menger’s Theorem: (1927) In any directed graph with
nodess and t, the maximum number of edge-disjoint
paths froms to t is equal to the minimum number of
edges whose removal separatess from t.

Proof: This is simply the special case of the Max-Flow-
Min-Cut Theorem when all the edges have weight 1. If
the size of the minimum cut isk, there must exist a flow
of sizek, and hence an integer flow of sizek. We can
easily divide this flow intok edge-disjoint paths froms
to t.

7

The Bipartite Matching Problem

Recall that a graph isbipartite if its vertex setV is par-
titioned into two setsX andY and the edge setE is a
subset ofX × Y . A matching is a subset ofE where no
two distinct edges share a vertex. A matching isperfect
if |X| = |Y | = n and the matching hasn edges.

We saw earlier that although a greedy algorithm only gets
a maximalmatching in a bipartite graph, we could get a
maximummatching in polynomial time by another ap-
proach. We also saw that the maximum bipartite match-
ing was a special case of finding an element of maxi-
mum cardinality in theintersection of two matroids,
and we asserted without proof that this latter problem can
be solved in polynomial time.

8

We can also solve the bipartite matching problem in poly-
nomial time by mapping it to a network flow problem.
Given a bipartite graphG = (X,Y, E), our network flow
diagram consists of the following vertices and edges, where
all edges have weight 1:

• A source vertexs and a sink vertext,

• Copies ofX andY

• An edge froms to each member ofX,

• The edges ofE from X to Y , and

• An edge from each vertex ofY to t.

The Ford-Fulkerson algorithm gives us a maximum flow,
with integer edge flows, in polynomial time. Ifm is the
size of this flow, we must have exactlym edges ofE with
unit flow, and zero flow on the rest ofE. Since only one
unit of flow can enter any vertex inX or leave any vertex
in Y , thesem edges cannot share a vertex on either side
and so constitute a matching.

Furthermore, any matching inG can be converted into a
flow of this kind, so finding a maximum flow corresponds
exactly to finding a maximum matching inG. A perfect
matching exists in a graph with|X| = |Y | = n iff the
maximum flow has sizen.

9

Scheduling problems often involve finding matchings, and
can often be modeled as network flow problems. Con-
sider the following problem from last year’s 611 midterm:

• We havem workers andn shifts that need to be cov-
ered.

• Each workerwi has a numberti of shifts that she will
work.

• Each shiftdj has a numbersj of workers needed on
that shift.

• Fortunately,∑i ti = ∑
j sj = r.

• Each workerwi has a listLi of preferred shifts.

• We have a limitc on the number of non-preferred
shifts we may assign in all.

We can model the setsLi as a bipartite graph, where ver-
texwi is connected to each element ofLi. Our ideal goal
would be to find a set of edges in this graph that has ex-
actly ti edges including each vertexwi, and exactlysj

edges touching each edgedj. If all the si’s andtj’s were
1, this would be the perfect matching problem.

10

It is easy to model this situation as a flow network, much
as we did for the matching problem. We have a source
vertexs with an edge of capacityti to each vertexwi. We
represent the setsLi by edges of capacity1, and have an
edge of capacitysj from each vertexdj to the sink vertex
t.

An integer flow in this network is a partial assignment of
workers to shifts that respects the workers’ preferences
and does not exceed any worker’s supply or any shift’s
demand. If we have a flow of sizen, we can complete the
entire assignment with every worker getting a preferred
shift. If we have a flow of sizen − c, then we can make
n−c preferred assignments and then assign the remaining
workers to the remaining shifts arbitrarily, still meeting
the constraint that at mostc assignments may be non-
preferred.

11

The Baseball Elimination Problem

Here is another application of network flow taken from
the Kleinberg-Tardos textbook. Near the end of a base-
ball season, fans want to know whether their team has
beeneliminated, meaning that they cannot possibly fin-
ish in first place. (For our purposes here, we will define
“first place” as havingat least as manywins as any other
team in the division. Under current rules, teams tying for
first place have a playoff game unless all would qualify
for post-season play anyway.)

The simplest way to argue that TeamX has been elim-
inated is to prove that some other teamY will finish
ahead ofX using themagic number method. If the
sumWY + LX of Y ’s wins andX ’s lossesexceedsthe
total number of games played (which is the same for all
teams), then even ifX win all their remaining gamesY
will still have more wins.

12

But there are situations whereX has no chance of fin-
ishing first, but the magic number method does not prove
thatX has been eliminated. Suppose that with one game
left for each team,Y andZ are tied for the lead andX is
one game behind (has one fewer win). The magic num-
ber method says thatWY + LX andWZ + LX are each
equalto the total number of games played, so there is still
a chance forX to tie.

But what if Y andZ play their last gameagainst each
other? Then the winner of the game will have two more
wins thanX has now, andX cannot possibly have more
than one more win.

We can formalize this argument as follows:X now has
k wins and can finish with at mostk + 1 wins. Theset
of teamsS = {Y, Z} now has2k + 2 wins and must
have another win from the final game betweenX and
Y . By the Lake Wobegon Principle (“it is not possible
for all elements of a set of numbers to be strictly below
average”), some team inS must finish withmore than
(2k+3)/2 wins, which is to say with at leastk+2, strictly
more thanX could have.

13

A natural question is whether we need to consider even
more complicated arguments to determine whether a team
has been eliminated. We’ll use our knowledge of the net-
work flow problem to prove:

Theorem: If X has been eliminated (cannot finish first
under any possible scenario of results for the remaining
games) then there exists a set of teamsS such that we can
prove as follows that at least one team inS must finish
ahead ofX. Specifically, if k is the bestX could do
(current wins plus future games) then the wins of teams
in S plus the number of games internal toS, divided by
the number of teams inS, is greater thank.

Proof: We set up a network flow problem, with:

• A source vertexs, with edges to

• A column of vertices for everypair of non-X teams –
the weight of the edge froms to “Y versusZ” is the
number of games left betweenY andZ,

• A column with a vertex for each team, and an edge
from each “Y versusZ” to bothY andZ, and finally

• A sink vertext, and an edge from each teamY to t
whose capacity isk − WY , whereWY is the number
of winsY currently has.

14

We have set up a flow network in which the integer flows
represent scenarios for the remainder of the season. If we
have a maximum possible flow, equal tog, the number of
games remaining that don’t involveX, then each game
has a winner (actually the flow into “Y versusZ” splits
into an integer number ofX wins and an integer number
of Y wins). Also, no non-X team exceedsk total wins.
Thus a scenario exists in whichX at least ties for the
lead.

What if there isno flow of the maximum possible size
g? Then we know thatX is eliminated, and it remains to
show that a setS exists that satisfies the conditions of the
theorem.

By the Max-Flow-Min-Cut Theorem, there must be a cut
of our flow network whose capacity is at mostg − 1. We
first show that without loss of generality, this cut has a set
S of vertices in the team column on the left side, together
with the vertices in the pair column that represent pairs
contained toS. If our original cut has a pair vertex on the
left that has one or both of its edges across the boundary,
we can move this vertex to the right. The capacity of the
cut then either stays the same or goes down by one.

15

Our revised cut hass, the pairs fromS, and the teams in
S on the left, and all other vertices on the right. What is
the capacity of this cut?

• From s to the pairs column, we have the number of
games left that are not internal toS, which isg minus
the number internal tos.

• From the pairs column to the teams column, we have
arranged that no edges cross the cut.

• From the teams column tot, we have the sum over
teamsY in S of k −WY .

The total isg, minus the number of games internal toS,
plus the sum overS of k − WY . We are given that this
is at mostg − 1, from which it follows that the number
of games internal toS is strictly greaterthan the sum of
k −WY . Thus if we addWY for eachY in S, and add in
the number of games internal toS, we getstrictly more
thank|S|. Therefore the average number of wins among
the teams inS at the end of the season will be greater
thank, and we have a proof thatX is eliminated.

16

