
CMPSCI611: Introduction Lecture 1

This is a course aboutalgorithmics, themathematical
study of algorithms.

How and why should we study algorithms?

• Real-World Code?: Use science and engineering on
actual problems.Important, but not our topic here.

• Abstract Problems and Solutions?: Formulate com-
mon problems mathematically, design algorithms for
them, prove theorems about the resources needed by
each algorithm.The basic activity of this course.

• Computational Paradigms?: Identify design prin-
ciples common to problems in many domains.The
organizational structure of this course.

1



What should this course give you to use as a working
computer scientist?

• Specific solutions to specific problems, with specific
costs

• A toolkit of appproaches to new problems

• A deeper understanding of what can be done, and
what can be done quickly.

2



Two Slides From CMPSCI 601

Our real-world target isdigital computation. Our first ab-
straction is say that we have aninput, a collection of bits,
and want anoutput, often a single bit. The key questions
are then:

• How is the input organized?

• What computational operations are allowed?

• Do we have internal memory, and how much?

An answer to these questions gives us a formal model of
computation.

3



Some Formal Models of Computation:

• Boolean: Input bits are undifferentiated, we can use
boolean operations (AND, OR, NOT) and store the
results. We also express properties of the input using
propositional logic.

• Formal Language Theory: The input bits are ar-
ranged in astring of letters. We work with one let-
ter at a time. Defining the internal memory gives
us models such as thefinite-state machine, pushdown
automaton, or Turing machine.

• First-Order Logic: The input bits form astructure
made up ofrelations. We express properties of the
input using first-order logic (e.g., quantifiers∀ and
∃).

• Recursive Function Theory: Input bits are formed
into non-negative integers, on which we define func-
tions starting from arithmetic operations.

• Abstract RAM: The input and internal memory are
formed into words in registers, and operations mimic
those of real-world sequential computers.

4



The Basic Question:How many steps might it take, in
theworst case, to solve problemX for an input of sizen?
(Sometimes we will also think about theaverage case.)

This is thetime complexity function for problemX,
calledTX(n) or T (n) if X is clear from context.

How to measure the answer?Not just “with what units”,
but “with what mathematics”?

• We don’t care exactly what a basic step consists of.

• We’re interested mostly in thegrowth of T (n) asn
gets large. So weignore small valuesof n andignore
constant multiplicative factors.

Thus we useasymptotic notationfor functions.

5



Big-O and Related Notation:

Let f andg be functions fromN (the non-negative inte-
gers) toR, the real numbers.

• f = O(g) (“f is big-O ofg”) means

∃c : ∃n0 : ∀n ≥ n0 : f (n) < cg(n)

• f = o(g) (“f is little-O of g”) means

∀c > 0 : ∃n0 : ∀n ≥ n0 : f (n) < cg(n)

• f = Ω(g) (“f is big-Omega ofg”) means

∃c : ∃n0 : ∀n ≥ n0 : f (n) ≥ cg(n)

• f = ω(g) (“f is little-Omega ofg”) means

∀c > 0 : ∃n0 : ∀n ≥ n0 : f (n) > c(f (n)

• f = Θ(g) (“f is Theta ofg”) means

f = O(g) ∧ f = Ω(g)

Basic Facts: Θ is an equivalence relation, arithmetic
works on classes with additional rules such as(f = O(g)) →
(f + g = O(g)). etc.

Common Equivalence Classes:Θ(1), Θ(log n), Θ(n),
Θ(n log n), Θ(n2), Θ(n3), Θ(2n), Θ(n!), etc.

6



A problemX is in the classP if ∃k : TX(n) = O(nk).

Roughly speaking, the problems inP are those whose
running times scale reasonably withn. But there are ex-
ample of problems inP where:

• The best known exponent is large (O(n12) for prime-
testing)

• An exponent has been proved to exist but is unknown,
or the best known one is inconceivably large

• There is a known algorithm withO(n2) time, but the
best known constant in the big-O is inconceivably
large

But within the realm of problems we look at, identifying
P with “feasible” will make sense. And if a problem is
not in P, it doesnot scale well though we may have a
solution for useful small values ofn.

7



CMSPSCI 611: Course Requirements Lecture 1

Texts:

[A:] Micah Adler, Lecture notes for this course, avail-
able at Collective Copies, Amherst.

[CLRS:] Cormen, Leiserson, Rivest, and Stein,In-
troduction to Algorithms, McGraw-Hill (suggested
only)

[KT]: Kleinberg and Tardos,Algorithm Design, Addison-
Wesley (suggested only)

Prerequisites: Mathematical maturity: reason abstractly,
understand and write proofs, use big-O notation. In
UMass terms CMPSCI 250 absolutely needed; CMP-
SCI 311 strongly suggested, CMPSCI 401 helpful.
Considerable use of basic probability, some calculus.

Graded Work:

• Five or six problem sets (30% of grade)

• Midterm (30% of grade), Wed 26 October, 6:30-
9:00 p.m., Herter 231

• Final (40% of grade), during exam period

8



Cooperation: Students should talk to each other and
help each other; butwrite up solutions on your own,
in your own words. Sharing or copying a solution
could result in a grade of F for the course, even on
the first offense. If a significant part of one of your
solutions is due to someone else, or something you’ve
read thenyou must acknowledge your source!When
the grader then looks at the source, it should be clear
from your writeup that you’ve understood anything
you’ve taken from it. A good heuristic is not to have
the source in front of you when you write up.

9



The syllabus is now up on the course web site:

• http://www.cs.umass.edu/˜barring/cs611

Lectures will follow the Adler notes fairly closely, and
my slides will be available on the web site.

High-Level Outline of the Course:

• Preliminaries, Divide and Conquer (3 lectures)

• Greedy Algorithms and Matroids (4 lectures)

• Shortest Paths and Network Flow (4 lectures)

• Randomized Algorithms (4 lectures)

• NP-Completeness and Approximation Algorithms (7
lectures)

• Linear Programming (3 lectures)

10



CMSPSCI 611: Divide and Conquer: Mergesort Lecture 1

Divide and Conquer Paradigm: Splitproblem into pieces,
solvesubproblems using recursive calls,integratethe so-
lutions. Need abase casesolution. Prove correctness by
mathematical induction.

Sorting Problem: Input an array ofn objects of a type
that can be compared. Output the same objects in sorted
order according to these comparisons.

Mergesort Algorithm: Split list arbitrarily into two equal-
size sublists. Sort each list recursively. Merge the sorted
sublists by comparing the first elements of each list and
copying the smaller into the output list (deleting it from
its old list). Base case of sorting a one-element list is a
no-op.

11



How long does this take?

We form a recurrence relationthat gives an inductive
definition of the functionT (n). Assume that n is a
power of two (see HW#1).

• If n ≤ 1, T (n) = O(1)

• Otherwise, for evenn, T (n) = 2T (n/2) + TM(n)

We first need to analyzeTM(n), the time tomergethe
two sorted lists. It is pretty easy to see that this isΘ(n),
because we doΘ(1) steps to deal with each of then items.
So our second clause becomes:

T (n) = 2T (n/2) + Θ(n).

We will now look at a general method to solve recur-
rences of this type.

12



CMSPSCI 611: Divide and Conquer Recurrences Lecture 1

The Mergesort analysis has given us the recurrence:

T (n) = 2T (n/2) + Θ(n),

with base caseT (n) = Θ(1) for n ≤ 1.

Whenever we use divide-and-conquer, splitting the input
into a pieces each of sizen/b, merging them inΘ(nα)
time, and solving the base case in constant time, we get a
recurrence of this form:

T (n) = aT (n/b) + Θ(nα), base caseT (n) = Θ(1) for
n ≤ c

TheMaster Theoremgives us a general solution forT (n),
in big-O terms:

• Let β = logb(a)

• If α > β, thenT (n) = Θ(nα)

• If α = β, thenT (n) = Θ(nα log n)

• If α < β, thenT (n) = Θ(nβ)

13



Proof of the Master Theorem:

Use the rule to expandT (n) repeatedly:

T (n) = aT (n/b) + Θ(nα)

T (n) = a2T (n/b2) + aΘ((n/b)α) + Θ(nα)

T (n) = a3T (n/b3) + a2Θ((n/b2)α) + aΘ((n/b)α + Θ(nα)

When does this stop? When the argument ofT , which is
n/bi, falls into the base case. For simplicity, let’s assume
that n is a power ofb, so that eventuallyn/bi = 1 and
thusT (n/bi) = Θ(1). This gives us:

T (n) = aiΘ(1) + ai−1Θ(bα) + . . . + aΘ((n/b)α) + Θ(nα)

14



T (n) = aiΘ(1) + ai−1Θ(bα) + . . . + aΘ((n/b)α) + Θ(nα)

We may factor out theΘ’s (why?), and then note that to
get each term from the following one, we multiply bya
and divide bybα. So definingr to bea/bα, we get:

T (n) = Θ(nα(ri + ri−1 + . . . + r + 1))

(Becausenαri = nα(aα/biα) andbi = n.)

By the rule for arithmetic progressions (as long asr 6= 1),
this is:

T (n) = Θ(nα)(1−ri+1

1−r )

We need to analyze this sum based on the relative size of
α andβ.

15



T (n) = Θ(nα(ri + ri−1 + . . . + r + 1))

T (n) = Θ(nα)(1−ri+1

1−r )

Case I: If α > β, thenr = a/bα < a/bβ = a/blogb a =
a/a = 1. Then the geometric sum isΘ(1) (some con-
stant) andT (n) = Θ(nα).

Case II: If α = β, thenr = a/bα = a/bβ = a/a = 1.
The terms in the geometric sum are all the same (each
equal to1) so we just have to count them. There arei + 1
of them, andi = logb(n) = Θ(log n) sinceb is a constant.
SoT (n) = Θ(nα log n).

Case III: If α < β, then r > 1 and 1−ri+1

1−r = Θ(ri).
Sincer = a/bα, ri = ai/biα = ai/nα. Sonαri = ai =
(blogb a)i = bβi = (bi)β = nβ.

We have proved the Master Theorem. In the case of
Mergesort,a = b = 2 because we solve two subprob-
lems of half the size. We haveα = 1 because the time to
merge is linear. Sinceβ = logb a = log2 2 = 1, α = β
and we are in Case II. So the running time of Mergesort
is Θ(nα log n) = Θ(n log n).

16


