
CMPSCI 601: Recall From Last Time Lecture 9

Def: DTIME, NTIME, DSPACE, measured on
Multi-tape Turing Machines.

Th: DTIME
���������
	��

RAM-TIME
�
�������
	��

DTIME
����������������	

L � DSPACE
����������	

P � DTIME
���! #"%$'&(	 � ) *+-, $ DTIME

��� + 	

NP � NTIME
���  #"%$'& 	 � ) *+-, $ NTIME

��� + 	

PSPACE � DSPACE
���! ."/$
&0	 � ) *+-, $ DSPACE

��� + 	

Th: For
�������21 �43657�����81 �������

,

DTIME
�
�9�����
	 �

NTIME
���������:	 �

DSPACE
�
�9�����
	

DSPACE
�;57�����:	 �

DTIME
�=<  #"�>�"@?9&%& 	

Cor: L
�

P
�

NP
�

PSPACE
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CMPSCI 601: NTIME and NP Lecture 9

NTIME
���������
	 � probs. accepted by NTMs in time � �����������

NP � NTIME
���  ."/$
& 	 � ) *+-, $ NTIME

��� + 	

Theorem 9.1 For any function
�������

,

DTIME
�
�9�����
	 �

NTIME
���������:	 �

DSPACE
�
�9�����
	

Proof: The first inclusion is obvious. For the second,
note that in space � �����������

we can simulate all computa-
tions of length � �����������

, so we will find the shortest ac-
cepting one if it exists. �

Recall: DSPACE
�
�������
	 �

DTIME
�=<  #"�� " ?9&%&(	

Corollary 9.2

L
�

P
�

NP
�

PSPACE
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So we can simulate NTM’s by DTM’s, at the cost of an
exponential increase in the running time. It may be pos-
sible to improve this simulation, though no essentially
better one is known. If the cost could be reduced to poly-
nomial, we would have that P � NP.

There is probably such a quantitative difference between
the power of NTM’s and DTM’s. But note that qualita-
tively there is no difference. If

�
is the language of some

NTM � , it must also be r.e. because there is a DTM that
searches through all computations of � on � , first of one
step, then of two steps, and so on. If � �

�
, � will

eventually find an accepting computation. If not, it will
search forever.

What about an NTM-based definition of “recursive” or
“Turing-decidable” sets? This is less clear because NTM’s
don’t decide – they just have a range of possible actions.
But one can define “a function computed by an NTM” in
a reasonable way, and this leads to the same classes of
partial recursive functions, total recursive functions, and
recursive sets.

3



CMPSCI 601: Unsolvable Problems Lecture 9

We show that a particular language is recursive or r.e. by
exhibiting a Turing machine and showing that it decides
or accepts the language. (Note that “exhibiting” means
“proving the existence of” rather than “giving a state ta-
ble for”, and we may use high-level language to prove
that existence.)

We want to show that certain languages are not recursive
or r.e., which means showing that no possible Turing ma-
chine can decide or accept them.

The basic process will be to reduce an already unsolvable
problem to the target problem, showing the latter unsolv-
able. But clearly we need to start somewhere, by showing
some problem to be unsolvable in some other way.

Later in this lecture we’ll see the standard example of an
unsolvable problem, the halting problem of determin-
ing whether a given TM will halt on a given input. But
first (since many of you have seen the halting problem
before) we will show a different, related problem to be
unsolvable.
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CMPSCI 601: Busy Beaver Function Lecture 9

Definition 9.3 Suppose we start an
�

-state TM, with tape
alphabet ��� 3���� , on a tape with all zeroes. We define the
busy beaver function � �����

to be the maximum number
of ones left on the tape by any of the

�
-state TM’s that

halt in this situation. (Note that to fit our definitions, “0”
is now the “blank character”.) �

Note that � �����
is well defined:

There are only finitely many
�

-state TMs, with � � ��� 3���� .

Some finite subset, 	 ? , of these eventually halt on input
0.

Some element of 	 ? prints the maximum number of 1’s
on the tape, and this number is � �����

.
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� $ ��� � �
0 ��� 3 � 3�� � � 3 � 3�� � � 3 � 3��
1 � 3 � 3�	 � � 3 � 3�� � $ 3 � 3��

� ��
 �21 �

� $ 0 0 0 0 0 0 0
� � 0 1 0 0 0 0 0
� � 0 1 0 0 0 0 0
� � 0 1 0 1 0 0 0
� � 0 1 1 1 0 0 0
� $ 0 1 1 1 0 0 0
� � 1 1 1 1 0 0 0
� � 1 1 1 1 0 0 0
� � 1 1 1 1 0 0 0
� � 1 1 1 1 0 0 0
� � 1 1 1 1 0 0 0
� � 1 1 1 1 0 1 0
� � 1 1 1 1 1 1 0
� $ 1 1 1 1 1 1 0

� 1 1 1 1 1 1 0
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How quickly does � �����
grow as

�
gets large?

Is � �����
� � ��� � � �

� ����� � �

� � < ? � �

� ����� � �

� � < ��� � �

� �����
	�� ������� �

� �
����	 � �
����	 � ��������� �

����	 � �����
�

<
����� � � ��� ��������

?
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CMPSCI 601: Some Values of � �����
Lecture 9

States Max # of 1’s Lower Bound for � �����
3 � � 
 � �
4 � ��� � ��

5 � ��� � 1 � �����
6 � � � � � � �	��

�
See the web pages of Penousal Machado

(eden.dei.uc.pt/ � machado) and Heiner Marxen
(www.drb.insel.de/ � heiner/BB) for more on

this problem and its variants.

8



Theorem 9.4 Let � � N
�

N be any total, recursive
function. Then:

�����?��
)

�		
 �
�����

� �����
�
��� � �

That is, � �����
� � � � �������

.

Proof:

Let

� �����
�

� � �	
 ��� ?�+-,�� � ��� � � ��
Note: �����?��

)

�		
 �
�����

� �����
� ��� � �

We will show that for all sufficiently large
�

,

� ����� 1 � �����

9



First note that since � is total recursive, and � depends on� in a simple way, it is easy to design a TM that computes� �����
. Let � be the number of states in this TM.

For any
�

, define the TM

� ? � print
�

� ��� ��	��

� ?��
compute �
� ��� ��

binary
to unary� ��� �$��

� ? has � ��������� � � � ���
states.� ? prints � �����

1’s.

Once
�

is big enough that
� 1 � ����� ��� � � � ���

,

� ����� 1 � � � ����� ��� � � � ��� � 1 � �����

�
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CMPSCI 601: A Pairing Function Lecture 9

We have mentioned type casting of the input or output
of Turing machines. For example, we want to think of
numbers as strings or strings as numbers, so we have 1-
1, onto functions to convert one to another.

Very often we want to think of pairs or sequences of
numbers as single numbers. So we need a function to
convert a pair to a single number, and functions to take
a number and find the left or right element of the pair it
represents.

� � N � N
������
� ��� �

N

� �
	 �
�
� 3�� �

�
���

� �
	 � � ��� 3�
 ���

�
�

� � � ��� 3�
 ���
�
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Thus, the input to a Turing machine is a single binary
string which may be thought of as a natural number, a
pair of natural numbers, a triple of natural numbers, and
so forth. (Later we will worry about the complexity of the
pairing and string-conversion functions – do you think
they are in L)?

Some years ago a CMPSCI 601 student wrote a Java ap-
plet that calculates these functions. You are welcome to
play with the applet at:

.../ � immerman/cs601/chandler.html.
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CMPSCI 601: Numbering Turing Machines Lecture 9

Turing machines can be encoded as character strings
which can be encoded as binary strings which can be
encoded as natural numbers.

TM ? � < 
 �

0
� 3 � 3�� 
 3�� 3�� � 3 � 3 	 � 3 � 3�	

1
� 3 � 3�� � 3�� 3�� � 3�� 3 	 � 3 � 3�	� < 3�� 3�� � 3�� 3 	 � 3 � 3�� � 3 � 3��

� � 3 � 3�� � 3 � 3�	 � 3 � 3�	 � 3 � 3�	

ASCII:
� 3 � 3�� � � 3 � 3�� � < 3�� 3�� � � 3 � 3�� ��� � � � � 3 � 3�	

��� 3������ � �

N � �

There is a simple, countable listing of all TM’s:
	 � 3 	 $ 3 	 � 3 � � �
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CMPSCI 601: The Universal Turing Machine Lecture 9

Theorem 9.5 There is a Universal Turing Machine � such
that,

� ��� �43�� � �
�

	 ? ��� �

Proof: Given
� �43�� �

, compute
�

and
�

.
�

is a binary
string encoding the state table of TM

	 ? . We can simu-
late

	 ? on input
�

by keeping track of its state, its tape,
and looking at its state table,

�
, at each simulated step.

(Of course we may use multiple tapes to do this.)

�

Brookshear’s 1979 textbook has a complete diagram for
a universal Turing machine on two pages. Lewis and Pa-
padimitriou’s 1981 book has a pretty complete descrip-
tion of one.

Let’s now look at
	 � � �

, the set of numbers
� ���43�� �

such
that the Turing machine

	 ? eventually halts on input�
. We’ll call this language HALT. The existence of �

proves that HALT is r.e., and now we will prove that it’s
not recursive.
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HALT � � � ���43�� � �
TM

	 ? ��� �
eventually halts

�

Theorem 9.6 (Unsolvability of the Halting Problem)
HALT is r.e. but not recursive.

Proof: (First proof, based on busy-beaver result.)

HALT � � �
� � �

�
�

eventually halts
�

� � �
� � �

�
�
�

�
���

� � � � erase tape print 1

Suppose HALT were recursive. Then � �����
would be a

total recursive function: Cycle through all
�

-state TMs,
	 + , and if

� ��� 3 � � � HALT, then count the number of 1’s
in

	 + � � � . Return the maximum of these. But � �����
isn’t

total recursive, so we have a contradiction.

�
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CMPSCI 601: Listing All r.e. Sets Lecture 9

� + � � � � 	 + �����
�

���

The set of all r.e. sets =
� � 3 � $ 3 � � 3 � � � can be arranged

in an infinite two-dimensional array:

� � � < 
 � � � � � � � � � ?
� 0 � � � � � � � � � � � � �� �

1
� � � � � � � � � � � $< � � 1 � � � � � � � � � � �
 � � � 1 � � � � � � � � � �� � � � � 0 � � � � � � � � �

� � � � � �
0 � � � � � � �

�� � � � � � � 1 � � � � � �

� � � � � � � � 0 � � � � � �

� � � � � � � � � 0
� � � �

�... ... ... ... ... ... ... ... ... ...
� � � ...

� � � � � � � � � � � � �
� � � � � � � � � � � � �
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CMPSCI 601: Diagonalization and Halting Lecture 9

�
� � � � 	 ? �����

�
���

� � � � � � � ���43 �����
�

���

� � � � �
�

� ? �

Theorem 9.7
�

is not r.e.

Proof:
�

� � � � � �
� � ? �

Suppose
�

were r.e. Then for some � ,

�
� � � � � � � 	 � �����

�
���

� �
� � 	 � � �

�
�

� �
� � � � �

� �
�

�

Corollary 9.8
�

� r.e.
	

Recursive
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Theorem 9.9 HALT is still not recursive.

Proof: (Second proof, based on diagonalization:)

If HALT were, we recursive, we could use a decider for
HALT to build a decider for

�
� � � � � �

� ? � . (How?)

But that would make
�

recursive and thus would make�
r.e, contradicting the theorem above. So the HALT-

decider cannot exist. �
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