
CMPSCI 601: Turing Machines Lecture 7

� � ��� �����
	�����

�
: finite set of states;

� � �
�

: finite set of symbols; � ��� � �
	
:
� � � � ��� � ��������� � � ��� � � �"! �

� � 1 1 0 1
� � #$#%#

TM’s are exactly like DFA’s, except

& They may move either way on their tape
& They may change tape contents
& They have unlimited extra memory on the right end

of the tape

1

Giving a DFA some but not all of these capabilities gives
some intermediate models of computation:

& The two-way DFA can still only decide regular lan-
guages, though perhaps with many fewer states than
the corresponding ordinary DFA. Proving this is a
good exercise in the use of the Myhill-Nerode The-
orem.

& The linear-bounded automaton can change its tape,
but must stay within the bounds of the original input.
It recognizes the class we’ll later call DSPACE

��� �
and has a corresponding grammar definition.

2

CMPSCI 601: Example TM Lecture 7

mvRt.tm
� � ��� ���

0
� ��� �� � � �� ���

1
� ��� �� ���
�� ���

� � ��� �� � ��� ��� � ��� ���
� � � � ��� � � � � !

comment find
�

memorize change change
& erase

�
to 0

�
to 1

� � 1 1 0 1
� � #%#$#

� � 1 1 0 1
� � #%#$#

� � 1 1 0 1
� � #%#$#

� � 1 1 0 1
� � #%#$#

� � 1 1 0 1
� � #%#$#

� � 1 1 0 1
� � #%#$#

� � 1 1 0 1
� � #%#$#

��� � 1 1 0
� � � #$#%#

� � 1 1 0
�

1
� #%#$#

3

mvRt.tm
� � � � � �

0
� ��� �� ��� ��� ��

1
� ��� �� ��� ��� ��

� � ��� �� � ��� �� � ��� ��
� � � � � � � � � �$!

� � 1 1 0 1
� � #%#$#

...
��� � 1 1 0

� � � #$#%#
� � 1 1 0

�
1

� #%#$#
� � 1 1 0

�
1

� #%#$#
� � � 1 1

� �
1

� #$#%#
� � 1 1

�
0 1

� #%#$#
...
� � �

1 1 0 1
� #%#$#

� � �
1 1 0 1

� #%#$#

4

CMPSCI 601: TM History Lecture 7

Ancient Greece: Axiomatization of Geometry

Early 19th Century: Non-Euclidean Geometry, Inde-
pendence of Parallel Postulate (Gauss, Bolyai, Lobachevsky)

Later 19th Century: Rigorous Foundation of Calcu-
lus, Real Analysis

1901: Hilbert proposes complete axiomatization of all
mathematics, which would reduce all proof to mechani-
cal procedure

1930’s: Active interest in the question of what exactly
a “mechanical procedure” might be

5

Formal Models for Mechanical Procedures:

Church: Lambda calculus

Gödel: Recursive function

Kleene: Formal system

Markov: Markov algorithm

Post: Post machine

Turing: Turing machine

Theorem: If � and � are any two of the systems above,
and � is a function (say, from bit strings to bits), then �
is formalizable in � iff � is formalizable in � .

Church-Turing Thesis: The intuitive idea of “effectively
computable” is captured by the precise mathematical def-
inition of “computable” in any of the above models.

6

CMPSCI 601: TM Philosophy Lecture 7

“Why is a Turing machine as powerful as any other com-
putational model?”

Intuitive answer: Imagine any computational device. It
has:

& Finitely many states
& Ability to scan limited amount per step: one page at

a time
& Ability to print limited amount per step: one page at

a time
& Next state determined by current state and page cur-

rently being read (but what about randomization?)

Note: Without the potentially infinite supply of tape cells,
paper, extra disks, extra tapes, etc. we have just a (poten-
tially huge) finite state machine.

The PC on your desk, with 20 GB of hard disk is a finite
state machine with over �

��� ��� � � ��� � � ��� � � �
states!

This is better modeled as a TM with a bounded number
of states, and an “infinite tape”, actually meaning a finite
memory that expands whenever necessary.

7

CMPSCI 601: TM Functions Lecture 7

We have so far defined the behavior of a Turing machine
– what it will do on a particular input. Now we must
define its semantics – the way we assign meaning to its
behavior.

A Turing machine, once started, may or may not eventu-
ally halt. It could fail to halt in a number of ways: run
off the left end of the tape, enter a loop of repeated iden-
tical configurations, or keep expanding the area of tape it
uses forever. If it does halt, we want to define what its
completed computation means.

One semantics dating back to Turing’s original work is to
say that the Turing machine accepts its input if it halts,
and rejects its input if it doesn’t halt. The language of
the machine is then defined to be the set of strings that it
accepts.

While simple and useful for some purposes, this seman-
tics doesn’t allow us to distinguish among always-halting
computations, which after all are our main area of inter-
est.

8

We will design our Turing machines to have understand-
able behavior. In particular, we will design them to com-
pute functions from strings to strings in a particular for-
mat:

� ��� � �
���������� ���������

� if
�

on input “ � � �
” eventually

halts with output “ � � � ”�
otherwise

� � � � ! � � ��� �

Usually,
� � � ��� � �%�

Definition 7.1 Let � 	 ��
 � � ��
 �
be a total or partial

function. We say that � is recursive iff TM
�

, � �
� � # �

, i.e.,
����� � �
 � � � ��� � � � ��� ��� �

9

Remark 7.2 There is an easy to compute, 1:1 and onto
map between

� � � �%�

and N. Thus we can think of the

contents of a TM tape as a natural number and talk about
� 	 N

�
N being recursive. (We may visit this issue in

HW#3.)

A partial function � 	 N
�

N is a total function � 	 � �
N where

� �
N. A partial function that is not total is

called strictly partial. If
� �

N
! �

, � � � � � �
.

10

CMPSCI 601: Recursive, r.e. sets Lecture 7

Definition 7.3 Let � � �
 �
or � �

N.

� is a recursive set iff the function ��� is a (total) recursive
function,

� � ��� � � ���� ���
�

if
� � �

�
otherwise

� is a recursively enumerable set (� is r.e.) iff the func-
tion ��� is a (partial) recursive function,

� � ��� � � ���� ���
�

if
� � ��

otherwise
�

11

There is also a common alternate terminology for these
two concepts:

& Recursive sets are called Turing decidable because
an always-halting TM can be designed to output

�
for

inputs in the set and
�

for inputs not in it
& Recursively enumerable sets are called Turing ac-

ceptable because of the semantics mentioned above
– a TM can be designed to halt on inputs in the set
and not halt on inputs not in it

& The word enumerable is from another semantics – a
set is r.e. iff a TM can be designed that will list all
the elements of the set, running forever if the set is
infinite

12

Proposition 7.4 If � is recursive then � is r.e.

Proof: Suppose � is recursive and let
�

be the TM com-
puting � � .

Build
� �

simulating
�

but diverging if
� ��� � � �

. Thus� �

computes � � .
�

We will see that the converse of this proposition is false,
as there are sets that are r.e. without being recursive.

13

CMPSCI 601: Some Recursive Functions Lecture 7

Proposition 7.5 The following functions are recursive. They
are all total except for � even.

copy
� � � � � �

� ��� � � � � �

plus
��� ��� � � � � �

times
��� ��� � � � � �

exp
��� ��� � � ���

� even
��� � � ���� ���

�
if

�

is even
�

otherwise

� even
��� � � ���� ���

�
if

�

is even�
otherwise

Proof: Exercise: please convince yourself that you can
build TMs to compute all of these functions!

�

14

CMPSCI 601: Recursive
�

r.e. � co-r.e. Lecture 7

If � is any class of sets, define co- � to be the class of sets
whose complements are in � ,

co- � � � � � � � � �

Theorem 7.6 � is recursive iff � and � are both r.e.

Thus, Recursive
�

r.e. � co-r.e.

Proof:

(
�

direction)

If � �
Recursive then � � is a recursive function by the

definition.

Therefore � � ��� � � � ! � � ��� � is also a recursive function.

Thus, � and � are both recursive and thus both are r.e.

15

(other direction)

Suppose � �
r.e. � co-r.e..

By the definition two machines
�

and
� �

exist, such
that for all inputs

�
, � � ��� � � � ��� �

and � � ��� � � � � ��� �

We define a new machine � that runs
�

and
� �

in par-
allel. On input

�
, � does:

1. for
� 	 � �

to �
�

2. run
� ��� �

for
�

steps.

3. if
� ����� � �

in
�

steps then return(1)

4. run
� � ��� �

for
�

steps.

5. if
� � ��� � � �

in
�

steps then return(0)
�

Thus, �
��� � � � � ��� � , � � is a recursive function, and thus

� �
Recursive.

�

16

co-r.e.
complete

Arithmetic Hierarchy r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP

NP

U

co-NP

P

NC 2

log(CFL)

NC

NC

SAC

ThC

"truly feasible"

Regular

NSPACE[log n]

Logarithmic-Time Hierarchy AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1

0

17

