CMPSCI 601: Recall From Last Time Lecture 3

Definition: An alphabet is a non-empty finite set, e.g.,
> =40,1},T = {a,b, c}, etc.

Definition: A string over an alphabet X is a finite
sequence of zero or more symbols from . The unique
string with zero symbols is called e. The set of all strings
over Y is called X*.

Definition: A language over X is any subset of X*. The
decision problem for a language L is to input a string w
and determine whether w € L.

In formal language theory we look at various kinds of
machines that take a string as input, look at one letter at a
time, and decide whether the string is in some language.

We also look at various formal ways to specify a lan-
guage, such as regular expressions and context-free gram-
mars, that are used in the real world.

In the 1950’s and 1960’s it was discovered that each of
the most natural machine models corresponded to a spec-
Ification system: the languages that could be decided by
the machines were exactly those that could be specified
In a certain way. Here we’ll see some examples of that
phenomenon.

Finally, we will always be interested in when a language
cannot be decided by any machine in some class, or can-
not be specified within some system. Such a result is
called a lower bound, because we show that some partic-
ular amount of resources is insufficient.

CMPSCI 601: Regular Expressions and Sets Lecture 3

Definition: The set of regular expressions R(3:) over
alphabet X is the set of strings made up from >, “¢”, and
“0” and using the operations U, o, and *.

Meaning of a Regular Expression:

1l.ifa e ¥thena € R(X); L(a) ={a}

2.¢ € R(X); Lfe) = {e}

3.0 eR(X); L0)=0

4.ife, f € R(X) thensoare (eU f), (eo f), (e*):

LleUf) = L(e)UL(f)
Lleo f) = L(e)L(f) ={uv | u e Lle),v € L(f)}
L(e") = (Lle))”

Definition: A deterministic finite automaton (DFA)
IS a tuple,

D= (Q,>,6,s,F)

e () Is a finite set of states,

e X Is a finite alphabet,

e) : () x X — (Isthe transition function,
e s € () Is the start state, and

o [’ C () Is the set of final or accept states.
A DFA executes the following pseudo-Java algorithm:

publ i c bool ean i sAccepted (String w {
State s = start St at e;
for (int 1=0; 1 < wlength(); 1++)
s = delta(s, w.charAt(i));
return I sFinal State(s);}

We will be interested in the following results about DFA’s
and regular languages.

e Kleene’s Theorem: A language is decided by some
DFA iff it is regular.

e Myhill-Nerode Theorem: There is a minimal DFA
for any regular language, definable in terms of a purely
language-theoretic property.

e Non-Regularity Proofs: If a language is not regular,
we can usually prove that fact.

Definition: A nondeterministic finite automaton
(NFA) is a tuple,

N=(Q,%,A,s,F)

e () Is a finite set of states,

e X Is a finite alphabet,

o A:(Qx(XU{e}) = p(Q) is the transition function,
e s € () Is the start state, and

o [’ C () Is the set of final or accept states.

LIN) = {w]|s,qeF)}

So A(q, a) is the set of states to which N might go if it
reads a when in state q. There might be zero, one, or
more than one.

Proposition 3.1 Every NFA N can be translated into an
NFA without e-transitions N’ such that L(N) = L(N').

Proposition 3.2 For every NFA, N, with n states, there
Is a DFA, D, with at most 2" states s.t. £(D) = L(N).

Theorem 3.3 (Kleene’s Theorem) Let A C X* be any
language. Then the following are equivalent:

1. A= L(D), for some DFA D.

2. A= L(N), for some NFA N with no e-transitions
3. A= L(N), for some NFA N.

4. A = L(e), for some regular expression e.

5. Ais regular.

Proof: Obvious that1 — 2 — 3.

3 — 2 by Prop. 1.2 (e-elimination).

2 — 1 by Prop. 1.3 (subset construction).
4 + 5 by definition

4 — 3: We showed by induction on all regular expres-
sions e that there is an NFA N with L(e) = L(N).

3 — 4: (Cf. state elimination proof [S, Lemma 1.32])
Let N=({1,...,n},2, A, LF), F={f1,..., [}

Li; = {w | j € A™(4,w); no intermediate state # > k}

L ={a|jeAGa)} U {e]i=j}

k+1 _ 1k k k L}
Lz.j = LZ-]- U L¢k+1(Lk+1k+1) Lk+1,j

k
L k+1 k+1

CMPSCI 601 The Myhill-Nerode Theorem Lecture 3

Let A C >¥* be any language.

Define the right-equivalence relation ~ 4 on >*:

rr~ay < (YwedX)(zwe A & ywe A

x ~ 4 y Iff x and y cannot be distinguished by concate-
nating some string w to the right of each of them and
testing for membership in A.

Example: A; = {w € {a,b}* | #(w) =0(mod2)}
€ ~4, G ~4, GG b ~ ab ~ bbb

Claim: x ~y, yiff #5(x) = #(y) (mod 2).
Proof: Suppose z ~4, y. Letw =e.

Tw =1 € Ay <y yw =1y € Ay

Thus, #u(z) = #4(y) (mod 2).

Suppose, #4(z) = #4(y) (mod 2).
(Yw)#s(zw) = #p(yw) (mod 2) .

Vw)(zw € A1 & yw € Ay)

Thus, z ~4, . [

ulo, = {weX | u~ygw}
la] = {w € {a,b}" | #s(w)
b] = {w € {a,b}" | #(w)

0(mod2)}
1 (mod2)}

10

Review: Show that for any language A, ~ 4 IS an equiv-
alence relation. Recall that an equivalence relation is a
binary relation that is reflexive, symmetric, and transi-
tive.

Proof: Reflexive: (Vo € ¥*)(x ~4 x)

Let z, w € X* be arbitrary.

(zw € A < zwe A)

Vw € X)(zw € A <+ zw € A) because w was
arbitrary.

I ~YpA T

(Vx € ¥*)(x ~4 x) because = was arbitrary.

11

Symmetric: (Vx,y € X*)(x ~4y = Yy ~a)
Let z, y, € X* be arbitrary.
Suppose x ~4 v.

(Vw)(zw € A < yw € A)
(Vw)(yw € A < zw € A)
Yym~a
T~AY 7Y ~AX

Ve, y e X)(x ~ay = y ~aT)

12

Transitive:
Vz,y,z € 5)(x ~ay Ny ~a2) = &~y 2)

Let z,y, z € X* be arbitrary.
SUppose x ~A4 Yy Ay ~4 2.

(Vw)(zw € A < yw € A)
(Vw)(yw € A + 2w € A)
Let w € >* be arbitrary.

(zw € A < yw € A)
(yw € A < zw € A)

(zw € A < zw e A)

Vw € YY) (zw € A <+ 2w € A) because w was
arbitrary.

I ~Yp R

(X ~AYANY ~a2) > T ~og2

(Va,y,z € X)(x ~4a Yy ANy ~4 2) = x ~4 2z because
x, 1y, z Were arbitrary. [

13

CMPSCI 601 Recall These Proof Methods Lecture 3

e To prove (Vx)y: let x be arbitrary, prove ¢, conclude
(V).

e To prove ¢ — 1) assume ¢, prove v, conclude ¢ —
.

e From ¢ A vy may conclude ¢, .

e From ¢, 1y may conclude ¢ A .

e TO prove . assume —p, prove A A - A, conclude .

14

An Example:

reay S (@) = #y) (mod2)

:))

b

This language has two equivalence classes, and the DFA
operates by reading each letter in turn and determining
the class of the part of the string seen so far. The cor-
respondence between states and classes is the essence of
the theorem.

15

Myhill-Nerode Theorem: The language A is regular
Iff ~4 has a finite number & of equivalence classes. Fur-
thermore, this number & is equal to the number of states
In the minimum-state DFA that decides A.

Proof: Suppose A = L(D) for some DFA,
D = ({Q17 q2, ..., QH}a 27 57 qi1, F)
LetS;, = {w | 6" (q1,w) = ¢;}

Claim: Each S; is contained in a single ~ 4 equivalence
class.

Letx,y € S;, w € X* be arbitrary.

0*(q1, zw) = 6*(6"(q1,), w) = 6"(6"(q1, y), w) = 6"(q1, yw)
LD) = {z]0(q,2) € F;
zw e A & (q,zw) € F < 0 (q,yw) € F < ywe A

(Vw)(zw € A <> yw € A)

T ~YAY

Thus, there are at most »n equivalence classes.

16

Conversely, suppose that there are finitely many equiva-
lence classes of ~4: E4, ..., E,,.

Let [x] be the equivalence class that x is in.
Define D = ({F4,...,E}, 2,0, €], F') where

F =A{lz] | r € A}
6([r],a) = |za]
We must show that ¢ 1s well defined, i1.e.,

(] =) = (za] = [ya])

Suppose x ~ 4 v.
(Vw)(zw € A > yw € A)

(Vw)(zaw € A < yaw € A)

Thus, xa ~4 ya.
Claim: §*([e], x) = |z].

Proof: Dby induction on |x| [exercise].

r € L(D) < 6(e,z) e F < [zg]e F < z€ A

17

Example: The following language is regular, and its
minimal DFA has seven states:

Ay = {fwe {0,1,...,9 | Tlw)

D; = ({0,1,...,6},%,47,0,{0})
07(q,d) = (10g+d)mod7 = (3¢+d)mod7
It is straightforward to show that £(D7) = A (try this
as an exercise). To show that D; is minimal, we must

show that there are seven different equivalence classes.
Since the strings 0, 1, ..., 6 each take Dy to a different

state, they are our candidates to be in different classes.
We must show:

(Vi 7éj S {0717“'76})(i 76147 J)

18

Let: # j € {0,1,...,6} be arbitrary. We can find a
number d such that 3¢ + d = 0 (mod 7) (why?). If i ~4,
j were true, then we would have 35 + d = 0(mod?7)
because §*(id) would have to equal 6*(jd). But in that
case:

3i+d = 35 +d(mod?7)
3t = 35 (mod 7)
15¢ = 155 (mod 7)
i = j (mod7)

Thus, we must have ¢ £ 4. j. Since ¢ and 7 were arbitrary,
no two of the seven strings are equivalent and there are
seven classes.

19

cvwpsciso1: Proving Languages Non-Regular — Lectures

By Kleene, a language is non-regular if it has no DFA.

By Myhill-Nerode, then, A Is non-regular if ~ 4 has in-
finitely many equivalence classes.

To prove that A is non-regular, we find an infinite set of
strings, no two of which are ~ 4-equivalent.

Example: Show E = {a™" | n € N} is not regular.

Proof: Let: = 5 € N be arbitrary.
We can easily show from the definition that a* £ a’.
Let w = b’

a'w € E; dw & F

So each element of {a’ : ¢ € N} is in a separate equiva-
lence class.

20

Another Example: PAL = {w | w = w?} is not
regular. (Here w® is w written backwards.)

It’s almost true that no two different strings are equiva-
lent, but not quite. (Can you find a counterexample?) All
we need for the proof, though, is to find an infinite set
of strings. {a'b : i € N} is such a set, if there are two
distinct letters a and b in X..

What if X contains only a single letter? (This is called
a unary language.) Then PAL is a regular language
(why?). It’s easy to miss cases like this if you’re not care-
ful. But look at our proof! In order to finish it, we had
to assume that there were two different letters in 3. To
justify this step, we must add a condition to the statement
of the problem.

Harder Example: The set U PRIME, defined as {a’ :
¢ 1S prime}, is not regular.

21

CMPSCI 601 Regular Language Closure Lecture 3

We have seen that a single class of formal languages has
several alternate specifications: by Kleene’s Theorem a
language has a DFA iff it has an NFA iff it has a regular
expression. (There are more!)

This suggests that this class has mathematical importance.
The alternate characterizations are also useful in proofs.

For example, we can ask what operations, when applied
to regular languages, always give us more regular lan-
guages. Cases of this phenomonon are called closure
properties.

22

Closure Theorem for Regular Sets: Let A, B C >* be
regular languages and let h : >* - I™and g : [— »*
be homomorphisms. Then the following languages are
regular:

1. AUB

2. AB

3. A= (T — A)
4, ANB

5. h(A)

6. g7'(A)

The last two require a new definition:

A language homomorphism is a function h : >* — I
S.t.

(Va,y € X7)(h(zy) = h(z)h(y)) (3.3)

23

Examples:

h:{0,1,2,3} — {a,b}*
h(0) = aa, h(1) = b, h(2) = aba, h(3) =€
h(012310) = aabababaa

g:{a,b} — {a,b,c}
gla)=a, g(b) = chc
g(baa) = cbcaa

Notation: forfunctionf: A — B,setsS C A,T C B,
f(S) = {f(a) |a€ S} fUT) = {acA| fla) €T}

Example:
Ay = {w € {a,b}" | #p(w) =0(mod2)}

Rt (A) = {we{0,1,2,3} | #1(w)+ #2(w) = 0(mod2)}
g(A1) = {w € {a,b,c}* | #4. = 0(mod?2); no other b or c}

24

Proofs of Closure Properties:
(1,2): Let L(e) = A, L(f) = B.
Thus L(eU f) = AUB; L(eo f) = AB

(3): Let £(D) = A, DFAD = (Q,%,4,s, F).
Let D = (Q,%,4,s,Q — F).
Thus £L(D) = A

(4): AnB=AUB
(5): Let A = L(e).
Thus h(A) = L(h(e)).

Example:

gla) = a, g(b) = cbc
A = L(a*(ba*ba*)")
g(A) = L(a*(cbca*cbca™)”)

25

(6): Let A = £(D),DFA, D = (Q, X, 4, s, F).
Let D' = (Q, 1,4, s, F).

q,v) = (g, h(v))

26

