
CMPSCI 601: Recall From Last Time Lecture 24

Parallel Computation: Many computations at once,
we measure parallel time and amount of hardware.

Models: (time measure, hardware measure)

� Parallel RAM: number of steps, number of processors
� Alternating TM: alternations,

� s�������
� Boolean Circuits: depth, size

Uniformity: The 	 -input circuit in the family must be
easily (
 � L � or
 � FO �) computable from input
�� .
Theorem: P equals uniform PSIZE.

NC Hierarchy: Classes of programs with fast (��������	����������
time) parallel algorithms that use reasonable (� �����) hard-
ware.

1

Definition 24.1 (The NC Hierarchy) Let � � 	�� be a poly-
nomially bounded function and let � � �����
	��
 Then
� is in the circuit complexity class NC �
� � 	���� , AC ��� � 	 ��� ,
ThC �
� ��	���� , respectively iff there exists a uniform family
of circuits � � ������������� with the following properties:

1. For all � � �����
	�
 � � � � � � ����� � � �"!

2. The depth of � � is # �$� ��	���� .
3. %&� � %(' 	 ��� � �
4. The gates of � � consist of,

^

NC AC ThC

bounded fan-in unbounded fan-in unbounded fan-in
threshold gatesand, or gatesand, or gates

k^

2

For � ! ���
�������� ,
NC

�
! NC � ��������	�� � �

AC
�

! AC � � � ����	�� � �
ThC

�
! ThC � ��������	�� � �

NC !
� �
����� NC

�
!

� �
����� AC

�
!

� �
����� ThC

�

We will see that the following inclusions hold:

AC
�

� ThC
�

� NC � � L � NL � AC �
AC � � ThC � � NC � � AC �
AC � � ThC � � NC

	
� AC

	
... � ... � ... � ...� �

��� �
AC

� !
� �
��� �

ThC
� !

� �
��� �

NC
� ! NC

3

Overall, NC consists of those problems that can be solved
in poly-log parallel time on a parallel computer with poly-
nomially much hardware. The question of whether P !
NC is the second most important open question in com-
plexity theory, after the P ! NP question.

You wouldn’t think that every problem in P can be sped
up to polylog time by parallel processing. Some prob-
lems appear to be inherently sequential. If we prove that
a problem is P-complete, we know that it is not in NC
unless P ! NC.

Theorem: CVP, MCVP and HORN-SAT are all P-
complete.

Proof: CVP by analysis of P ! uniform PSIZE proof.
The other two by reduction from CVP.

4

Proposition 24.2 Every regular language is in NC � .
There are several different ways to prove this. The basic
idea is to use divide-and-conquer to determine the behav-
ior of a DFA on a string.

One way to look at it is that we know the behavior of
the DFA on each letter, as a function from the state set
to itself. We need to compose together these 	 different
behaviors to get the benavior of the DFA on the whole
string. We can compose two functions from an # �
 � -size
set to itself in NC

�
(# �
 � size and depth). A binary tree

of these composition operations gets the whole behavior
in NC � .
Another way to prove it is to draw a levelled graph of
length 	 and width # ��
 � , with a node for each state of
the DFA at each time, and and edge for the transition that
the DFA will make at that time looking at that letter of
� . We now have a REACH problem on a constant-width
graph, and we can adapt the Savitch argument to do this
in NC � .

5

This Savitch argument may be easier to see in the follow-
ing very similar result:

Theorem 24.3 Every regular language is in ATIME ��������	�� .

Proof: We are given the input string � of length 	 and a
DFA � for the language. White initially names the final
state in which � finishes on input � . In general White
has a claim of the form ���(� ��������� � meaning “if � starts in
state � and reads the string � � ����� ��� , it ends in state � ”.
White advances her claim by naming the state of � in
the middle of the current string. Black challenges either
the first half or second half of White’s claimed behavior.
When the claim is about one letter of � it can be tested
against the table of � and that letter from the input tape.

There are ������	 rounds, and in each White names a state
(# �
 � bits) and Black names a bit. 	

Actually, with a suitable uniformity condition,

Theorem: (Ruzzo) NC � ! ATIME � � ��� 	�� .
We’ll prove this later in this lecture, though without the
uniformity details.

6

Theorem 24.4 (Barrington-Immerman-Straubing) FO !
AC

�

Proof: (Sketch of one direction, with some uniformity
details skipped)

� ! ����� � ����� � ���
	 ��� �
� ��� ��	 �

or

and and and

x=1 x=n-1

or or

z=n-1

or or or or

x=0

y=0 y=0 y=n-1 y=n-1y=0y= n-1

M

x=0
y=0
z=0

M

x=0
y=0

M

x=0

z=0

M

y=0
z=0

M

y=0

M

z=0

M

z=n-1
y=n-1

x=n-1 x=n-1

z=n-1

x=n-1
y=n-1

x=n-1
y=n-1

	

7

Proposition 24.5 For � ! � �
����������
NC

�
� AC

�
� ThC

�
� NC

��� �

Proof:

All inclusions but ThC
�

� NC
��� � are clear.

MAJ ! � � � �����
	�
 %"� has more than % � % � � “1”s � � ThC
�

Lemma 24.6 MAJ � NC �
(and the same for any other threshold gate).

8

The obvious way to try to build an NC � circuit for major-
ity is to add the 	 input bits via a full binary tree of height
��� ��	 . The problem with this, is that while the sums being
added have more and more bits, we must still add them
in constant depth each.

It’s actually provably impossible to add two numbers of
more than constant length in constant depth if we use
standard binary notation and gates of fan-in two. This is
because the highest-order output bit might depend on any
of the input bits, and so needs to be connected to all of
them via wires.

+ + + + + + + + + + + +

+ + + + + + + +

log n

> n/2

+ +

+ + + +

+ + + +

1
x x

2
x x x x x x x x

3 4 5 6 7 8 31 32

9

A solution to this problem is via redundant arithmetic
notation. Consider a representation of natural numbers
in binary, except that digits ���
�� � ��� may be used. For
example 3213 and 3221 are different representations of
the decimal number 37 in this redundant notation:

� �
�� ! ��� � 	�� � � � � �
�� � � � ��� � � ! �
	
� � �
 ! ��� � 	�� � � � � � � � � � �
�� � � ! �
	

10

Lemma 24.7 Adding two 	 bit numbers with input and
output in redundant notation can be done with an NC

�
circuit, i.e., with constant depth and constant fan-in.

Example:

carries: 3 2 2 3

3 2 1 3
+ 3 2 1 3

3 2 2 1 0

This is doable in NC
�

because the carry from column �
can be computed by looking only at columns � and � �
 .
Details will be on HW#8.

Translating from redundant notation back to binary, which
must be done only once at the end, is just an addition
problem. This is first-order, and thus AC

�
, and thus NC � .

	

11

CMPSCI 601: Fitting in L and NL Lecture 24

Theorem 24.8 (Borodin) NC � � L

Proof: Use a recursive evaluation of the circuit:

boolean eval()
{// a method in the Gate class

if (type == OR)
return left.eval() || right.eval();

if (type == AND)
return left.eval() && right.eval();

if (type == INPUT)
return inputValue;}

We must save # �
 � bits each time we recurse, and our
recursion depth is the depth of the circuit, # ������� 	 � . Thus
we use # ��� ����	�� space. 	

12

Theorem 24.9 (Savitch) NL � AC �

Proof: Express the Savitch middle-first search algorithm
for REACH as a circuit. For every two nodes � and �
and every number

�
up to ������	 , have a gate � ��� ��� � � �

that will evaluate to true iff there is a path from � to � of
length at most

���
.

Then � ��� ��� � � �
 � is the OR, over all nodes � , of � ��� � � � � �
AND � � � �	� � � � . � ��� �
� � � � is the input bit � ��� �
� � OR’ed
with “ � ! � ”. There are only polynomially many gates
and our depth (using unbounded fan-in) is clearly # ����� ��	 � .
	

Note that this circuit uses unbounded fan-in only for OR
gates, so it is in a subclass of AC � called sAC � . By a
proof similar to Immerman-Szelepcsenyi, it can be shown
that sAC � is closed under complement – it can be defined
either with big-ORs-only or big-ANDs-only.

13

CMPSCI 601: The Alternation/Circuit Theorem Lecture 24

We know that ASPACE � � ����	�� ! P, and we have defined
subclasses of P in terms of circuits with limited depth. It
turns out that these same subclasses can also be defined
in terms of alternating Turing machines. We define sub-
classes of ASPACE ��� ����	�� in terms of limited time and
limited number of alternations.

Theorem 24.10 (Ruzzo) For all ���
 ,
� NC

�
equals the languages of ATM’s with space # ��� ��� 	��

and time # �������
�
	�� .

� AC
�
equals the languages of ATM’s with space # ��� ����	��

and # ��� ���
�
	�� alternations.

Proof: (This is a sketch, omitting many uniformity de-
tails. For example, the exact uniformity definition used
for NC � is a messy one designed specifically to make
NC � equal ATIME ��� ��� 	�� .)

14

First, consider simulating ATM’s by circuits. If we make
a gate for each of the 	���� � � configurations, we can con-
nect these gates into a circuit in an obvious way. The type
of the gate for configuration � is AND if � is a Black-
move (universal) configuration and OR if it is White-
move (existential). A terminal configuration becomes an
constant gate. The children of � are the two configura-
tions that the ATM can move to from � . The output gate
is the start configuration.

But we have a problem in that the children of a gate de-
pend on the input, and we can’t let the structure of the
circuit depend on the input (only on its size). However,
following Problem 5 on Spring 2003’s HW#7, we can
assume that the ATM is a one-look machine, that only
queries its input tape once, at the end of the computation.
(To be complete we would need to prove a lemma that
we can enforce the one-look restriction preserving time
or preserving alternations – I may or may not put this on
HW#8.)

15

What is the depth of the resulting circuit? It is equal to
the running time of the ATM, assuming we make the cir-
cuit have fan-in two. This shows the NC

�
part of this half

of the theorem, that the ATM with # ��� ��� 	�� space and
����� �

�
	�� time can be simulated in NC � . (Note that the

circuit to simulate the ATM will be very uniform.)

If we take the circuit we have constructed and collapse
it to an unbounded fan-in circuit by merging ANDs with
ANDs or ORs with ORs on consecutive levels, then our
depth is reduced from the running time to the number of
alternations. Each phase of all-AND or all-OR gates be-
comes a single level of the new circuit. There are some
details to check to make sure that this construction is suf-
ficiently uniform. But we only care in the case of AC �
and above, and in AC � we can test REACH and thus de-
cide whether one gate can be reached from another by a
path of all AND or all OR gates.

This (with some details missing) concludes the simula-
tion of ATM’s by circuits.

16

We now need to show the other half of the theorem, that
we can simulate a circuit with an ATM. But we’ve really
already done this, in defining the Circuit Game to solve
MCVP in ASPACE ����� ��	 � . (Why can we assume mono-
tone circuits? See HW#8.)

If the input circuit is fan-in two and depth # ��� ���
�
	 � (an

NC
�

circuit), the exact same Circuit Game will be com-
pleted in # ��� ���

�
	�� moves of the game. But can we imple-

ment a move of the game in # �
 � time on the machine?
We can have the players make their choices by writing
down a bit for each move. But how do we know whose
move it is, and where we are in the circuit? If we wrote
down the new gate number each time, we would neces-
sarily take # ��� ���

��� � 	�� time in all as each gate number
has # ������� 	�� bits.

17

The trick is to amortize the cost of writing down the gate
number by doing it only every ��� ��	 moves. In between,
the players operate by looking at the last gate number
recorded and the sequence of moves since then. We allow
challenges to any claims about whose move it is, or what
the new gate number should be, so we need the circuit to
be uniform enough that we can decide these challenges.

If the input circuit has unbounded fan-in, the player in the
Circuit Game picking a child must write down its entire
gate number, and then claim (subject to challenge) that
this gate is really a child. Now the moves of the game
take time # ������� 	 � each, but each move is only a single
alternation so the number of alternations is bounded by
the depth of the circuit.

This completes the proof of the theorem. 	

18

CMPSCI 601: Alternation and CFL’s Lecture 24

We’ll conclude our discussion of parallel complexity by
showing where another one of our existing classes, the
context-free languages, fits into the NC hierarchy.

Theorem 24.11 (Ruzzo) If � is any context-free gram-
mar,

� � � � � sAC � .

Proof: Using the Alternation/Circuit theorem, we’ll prove
this by designing an ATM game for

� � � � that has the fol-
lowing properties:

� White wins the game on input � iff � � � � � � ,
� the game uses # � � ��� 	�� space,
� the number of alternations is # ��������	�� , and
� all Black’s alternation phases consist of a single bit

move.

When we covert this game to a circuit, the last clause
ensures that all the AND gates have fan-in two, so we are
in sAC � . (Though our best upper bound for REACH is
also sAC � , it is believed that REACH is not complete for
sAC � while there are CFL’s that are complete for it.)

19

Let’s assume that � is in Chomsky normal form (only
rules of the form � � � � , � � � , or � � �). We
have an input string � , and White claims there is a way
to derive � � � using the rules of � . Black, as usual,
disputes this.

White advances her claim by naming a node in the middle
of the parse tree and saying what it does. Specifically, for
some � , � , and � she says � � � � ����� � � � � � � � ����� � � and

� � � ��� � ����� ��� . Black picks one of these two claims to
challenge.

If White is telling the truth about the orginal claim, she
can get two true claims by telling the truth. But if she is
lying, one of her two subsidiary claims must be a lie. We
continue the process until we have a claim about a single
input letter, such as � � � � , which can be verified by
looking up the input letter and checking the rules of � .

20

This is a valid ATM game that decides whether � �
� � � � , but it does not yet meet our specification. There
are two problems:

� The game could last as long as 	 �
 moves, rather
than the # � � ��� 	�� we need, and

� The subclaim under dispute might not be specifiable
in space # � � ����	�� , as it has the form

� � � � � ����� � ��� � � ��� ����� � ��� � � ��� ����� � ��	 �
We need # ������� 	 � bits to record each “scar” in the
string.

21

We solve the first problem by setting a fair time limit on
White. If she has not reduced the claim to one letter in
# ����� � 	�� moves, she loses. But why is this fair? On her
move, she is dividing the parse tree of � into two pieces
by cutting an edge.

Lemma: (Lipton-Tarjan) Any binary tree can be cut on
some edge into two pieces, each at most 2/3 the original
size. (Proof on Spring 2003 HW#8, solutions on my web
site.)

So since White is so smart, she can choose her division
to leave smaller subtrees, and after # ��� ��� 	�� moves she
can reduce the subtree to one node.

22

To solve the second problem, we force White to make
sure that the current claim is about a tree with at most
three scars, giving her # ������� 	 � more moves to spend on
this goal.

Lemma: Let
�

be any rooted binary tree and let � , � ,
and � be any three nodes none of which is an ancestor of
another. Then there exists a node

�
that is an ancestor of

exactly two of � , � , and � . (Proof on Spring 2003 HW#8,
with posted solutions.)

Now if White is faced with a tree with scars at � , � , and � ,
we force her to find some

�
and divide the tree there. This

may not shrink the tree under dispute very much, but it
makes sure that on the next move, the two subclaims have
only two scars each.

White still wins the revised game iff she should, and the
revised game now fits all the specifications. 	

23

co-r.e.
complete

Arithmetic Hierarchy r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP

NP

U

co-NP

P

NC 2

log(CFL)

NC

NC

SAC

ThC

"truly feasible"

Regular

NSPACE[log n]

Logarithmic-Time Hierarchy AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1

0

24

