
CMPSCI 601: Recall From Last Time Lecture 22

exists P approx alg for

ε

poly in n, 1/ε

ε

some but not all

< 1

all

< 1

< 1

no ε

APPROX

P

FPTAS Knapsack

PTAS ETSP

TSPClique

∆TSPMAX SATVertexCover

INAPPROX

1

CMPSCI 601: Interactive Proofs Lecture 22

random bits

finite

control

x: read-only input

work tape

n

ProofΠ:σ:

Merlin-Arthur games (MA) [Babai]

Decision problem:
�

; input string: �
Merlin — Prover — chooses the polynomial-length string�

that Maximizes the chances of convincing Arthur that
� is an element of

�
.

Arthur — Verifier — “computes” the Average value of
his possible computations on

� � � . Arthur is a polynomial-
time, probabilistic Turing machine.

2

Definition 22.1 We say that � accepts
�

iff the follow-
ing conditions hold:

1. If � � �
, there exists a proof

���
, such that � accepts

for every random string � ,� ���
	 � �
��� � � ����� � ������������� �
2. If � � �

, for every proof
�

, � rejects for most of the
random strings � ,

� �!�"	 � � � � � �#�$� � �%�%�&���'�)(�*
+

3

Any decision problem
� � NP has a deterministic, polynomial-

time verifier satisfying Definition 22.1.

By adding randomness to the verifier, we can greatly re-
strict its computational power and the number of bits of�

that it needs to look at, while still enabling it to accept
all of NP.

We say that a verifier � is � � ����� ��� ����� � -restricted iff for
all inputs of size � , and all proofs

�
, � uses at most� � � ���#� � random bits and examines at most

� � � ���#� � bits
of its proof,

�
.

Let PCP � � ����� ��� ���#� � be the set of boolean queries that are
accepted by � � ����� ��� ���#� � -restricted verifiers.

Fact 22.2 (PCP Theorem) NP � PCP �	��

��� � ���
The proof of this theorem is pretty messy, certainly more
than we can deal with here. But we can look at the appli-
cations of the PCP Theorem to approximation problems.

4

MAX- � -SAT: given a 3CNF formula, find a truth as-
signment that maximizes the number of true clauses.

� ����� ����� �	�&��
 � ����� �
��� ��� ��
 � ����� ����� �
� ��
 � ����� �	��� �
� �

� ����� �	��� ��� ��
 � �	��� �
��� ������
 � ����� ����� �	�&��
 � ����� �
��� �����
Proposition 22.3 MAX- � -SAT has a polynomial-time � ��
� approximation algorithm.

Proof: Be greedy, set each variable in turn to the better
value.

+
You can do better – a random assignment gets 7/8 of the
clauses.

Open for Years: Assuming NP � P is there some � ,� (� (� s.t. MAX- � -SAT has no PTIME � -approximation
algorithm?

5

Theorem 22.4 The PCP theorem (NP � PCP �	�
 ��� � ���)
is equivalent to the fact that

If P � NP, then

For some � , � � ��� �
,

MAX- � -SAT has no polynomial-time, � -approximation
algorithm.

Fact 22.5 MAX- � -SAT has a PTIME approximation al-
gorithm with � � �� and no better ratio can be achieved
unless P � NP.

References:

� Approximation Algorithms for NP Hard Problems, Dorit
Hochbaum, ed., PWS, 1997.

� Juraj Hromkovic, Algorithmics for Hard Problems,
Springer, 2001.

� Sanjeev Arora, “The Approximability of NP-hard Prob-
lems”, STOC 98, www.cs.princeton.edu/ � arora.

6

CMPSCI 601: Alternation Lecture 22

The concept of a nondeterministic acceptor of a boolean
query has a long and rich history, going back to various
kinds of nondeterministic automata.

It is important to remember that these are fictitious ma-
chines: we suspect that they cannot be built.

For � � STRUCfin ��� � a boolean query, define its com-
plement � � STRUCfin ��� ��� � . Given a complexity
class, � , define the complementary class,

co- � � � � � � � �
	

Example: SAT � NP; SAT � �
������� � co-NP

Open question: NP � � co-NP

If one could really build an NP machine, then one could
with a single gate to invert its answer also build a co-
NP machine. From a very practical point of view, the
complexity of a problem � and its complement, � are
identical.

7

CMPSCI 601: Nondeterminism Lecture 22

2s

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

t(n)

t(n)

Value � ID � � Value(LeftChild(ID)) � Value(Right(Child(ID))

weak communication pattern;
wasteful use of all these processors

8

Definition 22.6 Define an alternating Turing machine to
be a Turing machine whose states are divided into two
groups: the existential states and the universal states.

Recall that an instantaneous description (ID) consists of
the machine’s state, work-tape contents, and head posi-
tions. The notion of when such a machine accepts an
input is defined by induction: The alternating Turing ma-
chine in ID � accepts iff

1. ID � is in a final accepting state, or

2. ID � is in an existential state and there exists a next ID
that accepts, or

3. ID � is in a universal state, there is at least one next ID,
and all next ID’s accept.

t

t(n)

s

E

A

E

9

CMPSCI 601: The Game Semantics Lecture 22

What does it mean for a string to be in the language of
an alternating TM? We sometimes misleadingly say “the
ATM accepts � ” just as we might say “the NDTM accepts

� ”. But this isn’t really sensible, because we should not
talk about what an NDTM or ATM will do, only what it
might do.

Language of an NDTM: � � � ��� � iff � might accept
� .

Equivalently: � � � ��� � if a smart player, who controls
� ’s choices and wants � to accept, can make � accept.

Game Semantics of an ATM: There are two players,
White who controls � in the existential states and wants
� to accept, and Black who controls � in the universal
states and wants � to reject. � � � ��� � iff White can
force � to accept � given optimal play by each player.

This is equivalent to the definition of “acceptance” given
on the last slide, but I find it much easier to understand.

10

CMPSCI 601: Index Tapes Lecture 22

From now on assume that our Turing machines have a
random access read-only input. There is an index tape
which can be written on and read like other tapes. When-
ever the value � , written in binary, appears on the index
tape, the read head will automatically scan bit � bit of the
input.

workTape

read-only input w

n

h

q

1
2

s(n)

indexTape

h

11

We can now define alternating complexity classes as fol-
lows.

ASPACE ��� ���#� � is the set of boolean queries (languages)
accepted by alternating Turing machines that use

� ��� ����� �
tape cells on any computation path when the input size is
� .

Similarly ATIME � �����#� � is the set of boolean queries (lan-
guages) accepted by alternating TM’s that take

� � �%����� �
time steps on any computation path when the input size
is � .

Theorem 22.7 For � ����� � �

��� , and for �%����� � � ,� �
��� � ATIME � � ������� � � � � � �

��� � DSPACE � � ������� � � �
ASPACE ��� ���#� � � � �

��� � DTIME ��	�

����� �
Corollary 22.8 In particular,

ASPACE � �

��� � � P

ATIME � ����� � � � � PSPACE �

12

The Alternation Theorem has four parts.

We must simulate:

1. A time-bounded DTM with a space-bounded ATM,
using the circuit game,

2. A space-bounded DTM with a time-bounded ATM,
using the Savitch game,

3. A space-bounded ATM with a time-bounded DTM,
using the marking algorithm, and

4. A time-bounded ATM with a space-bounded DTM,
using exhaustive search of the game tree.

First, though, let’s see some examples of alternating ma-
chines. I’ll include both “classical” and game-semantics
descriptions of each machine.

13

Define the monotone, circuit value problem (MCVP) to
be the subset of CVP in which no negation gates occur.
It turns out that MCVP is still P-complete.

Proposition 22.9 MCVP is recognizable in ASPACE �	�
 � � � .
Proof: Let � be a monotone boolean circuit. For � �� �

, define “EVAL(�)”,

1. if (InputOn ��� �) then accept

2. if (InputOff ��� �) then reject

3. if (� � ��� �) then universally choose child � of �
4. if (� � ��� �) then existentially choose child � of �
5. Return(EVAL(�))

� simply calls EVAL(
�
). EVAL(�) returns “accept ” iff

gate � evaluates to one.

Space used for naming vertices � � � : � � ��

����� . +

14

Game Semantics for this Proof:

In the Circuit Game, we start with a marker at the output
gate of a monotone Boolean circuit � . On each move, the
marker moves from the current gate to one of its children
(one of its inputs). For AND gates Black chooses which
child to move to, and for OR gates White chooses. When
we reach an input gate marked with a literal, White wins
the game iff this literal evaluates to true.

White wants to stay on gates that evaluate to true, Black
on gates that evaluate to false. Whoever is happy with the
output gate can always move the marker to stay happy,
until an input is reached.

15

Definition 22.10 The quantified satisfiability problem (QSAT)
is the set of true formulas of the following form:

� � ��� � � � � ��� � � � ������� ��� � �	����
 +
For any boolean formula
 on variables � ,

 � SAT � ��
 ����
 � QSAT

 � SAT � ��� ������
 � QSAT

Thus QSAT logically contains SAT and SAT.

16

Proposition 22.11 QSAT is recognizable in ATIME[n].

Proof: Construct an alternating machine � as follows.
To evaluate the sentence,

�
� ��
 ����� � � ��� �	� ��� ��� � � � ����� � � �

in an existential state, � writes down a boolean value for
��� , in a universal state it writes a bit for � � , and so on.

Next � must evaluate the quantifier-free boolean formula
� on these chosen values. For each “
 ” in � , � univer-
sally chooses which side to evaluate; for each “ � ”, �
existentially chooses.

Thus � only has to read one of the chosen bits, ��� , and
accept iff it is true and occurs positively, or false and oc-
curs negatively.

� runs in linear time.

� accepts
�

iff
�

is true.
+

Game Semantics: White picks values for the
 vari-
ables, Black for the � variables. White wins iff the quantifier-
free part evaluates to true.

17

Theorem 22.12 For any � ���#� � ��

��� ,

NSPACE ��� ���#� � � ATIME � � ����� � � � DSPACE � � ����� � �
Proof: NSPACE � � ����� � � ATIME � � ����� � � :
Let � be an NSPACE � � ����� � Turing machine.

Let � be an input to � , � � ��� � .

� � � ��� � � CompGraph ��� � � � � REACH

� � � � � ��� � accepts iff there is a path in CompGraph ��� � � �
of length at most

*��
from � to

�
.

� � � � � ��� � � ��
	�
� � � � � � � � � � �
�

� � � � � � � ��� � �

1. Existentially: choose middle ID � .

2. Universally: � � ��� ��
 � � � � �
� AND ��� ��� �
3. Return(

� � � � � � � ��� �)

 � � � � � � � ����� ���
 � � � ��� � � � � � � ����� �
� � � � � ����� �

 � � � � � � � � ����� � � �
18

Game Semantics for this version of Savitch’s Theorem:

White originally claims that the path from � to � , of length
at most

*

����� , exists in CompGraph � � � � � . White ad-
vances this claim by naming the alleged middle vertex
of the alleged path. Black picks either the first half or the
second half of the path to challenge. The path whose ex-
istence is disputed is then half the length. They continue,
halving the length of the disputed path each time, until
they dispute the existence of an edge. At this point the
player with the correct claim about this edge wins.

If White’s path actually exists, White has a winning strat-
egy that consists of always telling the truth. If White is
wrong, however, either the first or second half of the al-
leged path must fail to exist, and Black has a winning
move.

19

ATIME � �%����� � � DSPACE � ������� � :
Let � be an ATIME � �%����� � machine, input � , � � � � � .
CompGraph � � � � � has depth

� � �����#� � and size
* � � � ����� � .

A deterministic Turing machine can systematically search
this entire and-or graph using space

� � ������� � . This is
done, by keeping a string of length

� � ������� � : ��� ��� � � � � ���
� � � � denoting that we are currently simulating step

�
of� ’s computation having made choices � � � � � � � on all of

the existential and universal branches up until now. The
rest of the simulation will report an answer as to whether
choices � � � � � � � will lead to acceptance. This is done as
follows:

If one of the following conditions holds:

1. � � � � , or

2. answer = “yes” and step
�

was existential, or

3. answer = “no” and step
�

was universal,

then let � � � � and report answer back to the
� � � ��� step.

Otherwise, set � � � � and continue. Note, that we do not
have to store intermediate IDs of the simulation because
the sequence � � � � � � � � � � � � � � uniquely determines which
ID of � we go to next.

+
20

t

*

t(n)

s

E

A

E

c c c c * * * * * *2 41 3

ATIME � ������� � � DSPACE � �%����� �
We evaluate the computation graph of ATIME � �����#� � ma-
chine using ������� space to cycle through all possible com-
putations of � on input � .

The game tree for the machine represents all possible
configurations and moves of the players. In effect our al-
gorithm exhaustively searches every possible path through
this tree, using space �%����� to keep track of where in the
search it might be. (One could do this with a very time-
inefficient recursive algorithm.)

21

Theorem 22.13 ASPACE � � ����� � � DTIME � * ���

����� � �
Proof: ASPACE � � ����� � � DTIME � * � �

����� � � :
Let � be an ASPACE � � ����� � machine. Let � be an input,
� � � � � .
CompGraph � � � � � � has size

� * � �

� ��� �
The marking algorithm evaluates this in DTIME � * � �

����� � � .

t

O(s(n))

s

E

A

E

2

2
O(s(n))

We mark the winner at each point, starting from the end
configurations and working backward.

22

DTIME � * ���

����� � � � ASPACE � � ����� � :
Let � be a DTIME � * � �

����� � � TM.

� an input, � � ��� � .
Define an alternating procedure � � � � � � � � which accepts
iff the contents of cell � at time � in � ’s computation on
input � is symbol � .

Inductively, � � � � � � � � �%� holds iff the three symbols ��� � � � �
� � �

in tape positions � � � � � � � � � lead to a “b” in position �
in one step of � ’s computation.

����� � � � �
� � ��� �� �

� � � � � � � � ��� � �
 � �
� � � �
� � � � ����� � � � � �

� � � � �� �

����� � � � � � � � � 	 � ��� � � � � � � � � � � � �
Space needed is

� � �

� * � �

����� � � =
� ��� ����� � .

Note that � accepts � iff � � * � �

� ��� � � � �
	 ��� � ��
 �

23

Space
1 2 � �
 �����

Time
� 	 �

�
� � �
 � � ����� � �

� ����� �

� � �
	 �
�

� � �
 ����� � �
� ����� �

...� � � � � � � �
� � � �

...
 ����� 	 ��� � �
 ����� ����� �����

� � � � � � � � ��� � �
 ���
� � � �
� �
�'� ������� � � � �

� � ��� �� �

����� � � � � � � � � 	 � ��� � � � � � � � � � � � �
Game Semantics: At each point in the game the contents
of a single cell of the tableau are in dispute. Originally
this is the bottom-left cell, which White claims is accept-
ing. At each move White names the three cells above the
current one, which must imply the claimed contents of
the current one. Black then picks one of these three to
dispute. Note the similarity to the Circuit Game.

This completes the proof of Theorem 22.7.
+

24

co-r.e.
complete

Arithmetic Hierarchy r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP

NP

U

co-NP

P

NC 2

log(CFL)

NC

NC

SAC

ThC

"truly feasible"

Regular

NSPACE[log n]

Logarithmic-Time Hierarchy AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1

0

25

