CMPSCI 601: Recall From Last Time L ecture 13

The Course So Far:

We’ve defined various models of computation in which
we can study what problems can and can’t be solved, and
what resources the solvable problems require.

The most important model has been the Turing machine,
which might or might not halt on a given input. Re-
cursive sets are decided by always-halting TM'’s, recur-
sively enumerable sets have TM’s that accept strings in
them and fail to halt on the others. Similarly total re-
cursive functions are computed by always-halting TM’s,
and partial recursive function by general TM’s.

Some sets and functions are provably not recursive:

e The busy-beaver function

e HALT = {(M, z) : M halts on input z}
e K ={n:necW,}

e any non-trivial property of machines

o >."-CFL

We showed busy-beaver and K to be non-recursive by
direct arguments. For the others we used reductions: if
A < B and A i1s not recursive, then B 1S not recursive.

A set is r.e.-complete if it is r.e and all r.e. languages re-
duce to it. No r.e.-complete language is recursive. But a
language can be non-recursive without being r.e.-complete
— K is co-r.e.-complete and thus not r.e., and there are
languages that are neither r.e. nor co-r.e. at all.

Other Formal Models of Computation:

e Formal Language Theory:

— Regular languages: DFA’s, NFA’s, or regular ex-
pressions

— Context-free languages: grammars or pushdown
automata

e Boolean:

— Compute on boolean values with AND, OR, NOT
— Boolean expressions compute boolean functions
— Straight-line boolean programs
— Fitch proof system: sound and complete

e First-Order Logic: (3, V) (starting today)

e Recursive Function Theory:

— Primitive Recursive: Bloop computable

— General Recursive: Floop computable, partial re-
cursive

e Abstract RAM:

— Can simulate TM, vice versa, poly time blowup

cvwpscieor: FIrst-Order Logic with Equality Lecture1s

In propositional logic we reason about some set of state-
ments, the atomic formulas, each of which is either true
or false. First-order logic with equality (FOL) is a
more complex logical system, in which we deal with the
fact that the atomic formulas are statements about ob-
jects.

To set up an FOL system we need a domain D, the set
of objects in question, which may be finite or infinite.
We then need a vocabulary, a formal definition of what
atomic statements we may make about the objects. We
then will be able to say:

e that two objects are the same,
e that an object exists with some property, or that

e all objects in D have some property.

Formal Definition of a Vocabulary:
A vocabulary Y is formally made up of three elements:

e The set & of function symbols, each representing
a function from D* to D for some k. & includes
the constant symbols of the vocabulary, which are
thought of as function symbols with £ = 0.

e The set II of predicate symbols, each representing a
relation on D, a function from D* to {0, 1} for some
k. The equality sign is included in II as a binary
relation, written in its usual infix form, e.g. “s = t”.

e The arity function r, which assigns the number of
arguments k to each symbol in ¢ and II.

Examples of FOL Vocabularies:

Number Theory: Ty = (®n, Iy, 7v)

oy = A0, o, +, x, 1}
rn(0) = 0,7x5(0) = 1,rn(+) = rn(x) = ry(1) = 2
Iy = {:7 <}7 TN<:) = TN(<) = 2

Graph Theory: Xg = (®,,11,,7,)

o, = {st], re(s) = r4(t) = 0

I, = {= E} re(=) = 14(E) = 2

Binary String Theory: Xy = (®y, [, 7))

b, = 0

I, = {=<I} rE=)=r<)=2mnr)=1

Tarski’s World: Yp = (&7, r, r7)

(I)T — {aaba C, d767f}

[l = { Tet, Cube, Dodec, Small, Medium, Large,
SameSize, SameShape, Larger, Smaller, SameCol, SameRow,
Adjoins, LeftOf, RightOf, FrontOf, BackOf, Between }

r(Tet) = r(Cube) = r(Dodec) = r(Small)
= r(Medium) = r(Large) = 1

r(SameSize) = r(SameShape) = r(Larger) = r(Smaller)
= r(SameCol) = r(SameRow) = r(Adjoins)
= r(LeftOf) = r(RightOf) = r(BackOf) = 2

r(Between) = 3

Inductive Definition of FOL Formulas:

Once we fix a vocabulary > we have a set L(33) of well-
formed formulas. Entities within formulas have two
types, “object” and “boolean”. We define valid formu-
las by induction:

Variables: We have an infinite set

V={z,y,2,x1,y1,21,..-}

Terms: A term is a variable, or a function applied to
the correct number of terms. A constant is a special case
of the latter.

Formulas: A string is a well-formed formula if it is:

e An atomic formula, which is a predicate symbol ap-
plied to the correct number of terms, or the special
atomic formula “s = ¢” where s and ¢ are terms,

e A boolean operator applied to the correct number of
formulas, or

e “Jdr : P” or “Vx : P” where z i1s a variable and P is a
formula.

CMPSCI 601 Some Formulas of £(Xy) Lecture 13

Abbreviations:
11 < 19 ‘—>(t1:t2\/t1<t2)

1 — o(0)
2 — (1)
3 — 0(2)
t1|to — (Jx)(t1 X x = to)

prime(tl) — 1<ty A (\le)($|t1 — (iL’ =1Vzx= t1>)

CMPSCI 601: Some Formulas of L',(Eg) L ecture 13

1. (Vay)(E(z,y) = E(y, z))

2. (Vo) (=E(z,z))

3. (Vz)(3y)(E(z,y) V E(y, z))

4. (Vz)(-E(z, s))

5. (Iyz)ly # z A E(z,y) A E(z, 2))

6. (Vy192u3)((E (@, y1) A E(z,92) N E(,y3))
— (m=wpVyu=yVy=13))

10

CMPSCI 601: Free and Bound Variables L ecture 13

An occurrence of a variable z 1s bound iff it occurs within
the scope of a quantifier, (Vz) or (dz). Otherwise the
occurrence Is free.

Examples — Which Variables are Free?

11

What Do Variables and Sentences Mean?

Bound variables are dummy variables — you can change
their names without affecting the meaning of the formula.

A first-order formula says something about its free vari-
ables in the context of a particular structure of objects,
predicates, and functions. You cannot determine the mean-
Ing of the formula without knowing the values of the free
variables.

A sentence (a formula with no free variables) says some-
thing about the entire structure of objects, predicates, and
functions. Thus a sentence of > talks about a particular
blocks world, a sentence of > talks about a particular
graph, and Xy talks about a particular set of numbers
with addition and multiplication defined.

This iIs true even though there is no syntactic reference
to the graph G In a X sentence, or to the string w In
a L sentence. In X we talk about a vertex as a vari-
able or constant, and an edge as a relation that holds for
two vertices. In Xy we talk about a position in the input
as a variable, and the letter a position contains as unary
relation on the position.

12

CMPSCI 601: First-Order Structures Lecture 13

A structure — also called a model — of a vocabulary
¥ = ($,I1,r) isa pair A = (U, u) such that:

U=|Al # 0
pw:V =U
T A
1 & — total functions on U9W
e f =AUV U
1 1 — relations on U0

. R — RACU®

=

13

How’s That Again?

In propositional logic we could decide whether an arbi-
trary compound formula was true or false once we had
a model, an assignment of a truth value to every atomic
formula.

In FOL the model must be more complicated. We need
to know what the objects are, and what the relation and
function symbols mean. If the universe or domain is fi-
nite, we can specify this information by finite lookup ta-
bles for each function and relation.

To evaluate a formula with free variables, we also need an
assignment of an element of the domain to each variable.

14

FOL Formulas as Propositional Formulas:

Suppose that we know that the domain is finite, and has
n elements. We can think of a sentence of FOL as im-
plicitly describing a propositional formula, where the
atomic formulas are particular values of the evaluation
function p. For example:

dr:Vy: B(z,y) <
(B(0,0)A...AB(O,n—1)) V
(B(1,0)A...AB(l,n—1)) V...V
)

Treat functions as relations, adding well-definedness for-
mulas.

Proposition 13.1 Any fixed FOL sentence on a universe

of size n Is equivalent to a propositional formula of size
O(1)
n .

Proof: Carry out the above process, noting that the size
Is only multiplied by O(n) for each quantifier in the for-
mula. [

15

Example: Any world, W, for Tarski’s World is is struc-
ture of vocabulary X7, i.e, W € STRUC[> 7.

Example of Graph Structures:
G = (V% 1,3, E) € STRUC[Z,]

VY = {0,1,2,3,4}
EY = {(1,2),(3,0),(3,1),(3,2),(3,4),(4,0)}

Is a structure of vocabulary ,, consisting of a directed
graph with two specified vertices s and ¢. G has five ver-
tices and six edges. (See the figure below which shows
(G as well as another graph H that is isomorphic but not
equal to G.)

16

Example of a Binary String Structure:
Let w be the string “01101”.

A, = ({0,1,...,4}, <, {1,2,4}) € STRUC[X]

Yig = (®7{27<7S}7{<:72>7<<72>7<Sa 1>})
— (;<27sl)

L (3z)Vy)(y <z A S(z))
2. (Vzy)((z < yA=S(x)A=S(y)) — (32)(z < 2 < y))

17

CMPSCI 601: A Relational Database Lecture 13

Z]gen — (;F17P2752)
By = <U(), Fy, Py, S()> S STRUC[den]

Uy = {Abraham, Isaac, Rebekah, Sarah, ...}
Fy, = {Sarah, Rebekah, ...}
Py = {(Abraham,lsaac), (Sarah,Isaac), ...}

So = {(Abraham,Sarah), (Isaac,Rebekah), ...}

Peivting(T,y) = Ffm)x £y AN f#m A
P(f,z) AN P(f,y) AN P(m,z) A P(m,y))

()Oaunt(xa y) = (EIpS(P(pa y) A Sosibling(pa 8) A
(s=2xVS(z,s))) N F(x)

18

It is perfectly reasonable to have two different models of
the same vocabulary, in which different things are true:

N = (N,0,0,+, x,T, <), the standard model of the nat-
urals

Z/pZ = ({0,1,...,p—1},0,+1,,4,, X, T, @), p prime

N, Z/pZ € STRUC[Z]

Multinverses = (Vu)(u =0V (Fv)(u x v =1))

N = —Multlnverses; Z/pZ = Multinverses

19

Beginning to Define Truth:

In propositional logic we inductively defined what it meant
for a truth assignment to satisfy a formula, or make it
true. In the same way we can inductively define what it
means for a structure, of the appropriate vocabulary V,
to satisfy a formula.

The first step is to assign an element of the domain to ev-
ery term of £(V'). To do this we inductively extend the
function p : terms — |A|, (already defined on variables
and constants).

p(filts, - tery)) = f by, (b))

Now every term has a meaning.

20

Tarski’s Inductive Definition of Truth:

(|A], 1) Et1 =1t & p(t1) = u(ta)
(Al 1) = Ri(t, - temy) & (ulta), ... wltyry)) € RS
(Il 1) E—p < (Al p) e
(AL p) EeVvy < (Al p) Eeor(|Ap) =¥
(
(

(|Al, u) E (Vx)p < (foralla € |A|)
Al 1, a/z) = @

wy) ify#x
a Ify==z

21

Play Tarski’s Truth Game!!!

world: W; sentence: o; players: A, B
A asserts that W | ¢; B denies that W = ¢.
The game rules depend inductively on the formula ¢:

@ isatomic: A wins iff W = o.

e = aVp: Aasserts W = aor Aasserts W = S.

aAB: BdeniesW = aor Bdenies W = 5.

AN
]

—«: A and B switch roles, and B asserts W =

2

¢ = dz(y): A chooses an element from |W)|, assign-
Ing it a name n. A asserts that W' | ¢|x < n].

¢ = Vz(y): B chooses an element from |W]|, as-
signing it a name n. B denies that W' = ¢[z < n].

22

Example: Does Z/3Z = (Vu)(u =0V (Fv)(u x v =
1))?
Z/3Z, 1o = (Vu)(u =0V (Fv)(u x v=1))

& (forall a € {0,1,2})
(Z/3Z, po,a/u) = (u=0V (Jv)(u xv=1)

(Z/3Z, o, 0/u) Fu=0
< (o, 0/w)(u) = (o, 0/u)(0)

& 0=0

(Z/3Z, o, 1/u) = (Fv)(u x v =1)
& (existsb € {0,1,2})(Z/3Z, po, 1/u,b/v) E (u x v =1)

(Z/3Z, g, 1/u,1/v) E (u x v =1)

Similarly,
(Z/3Z, po, 2/u) | (Fv)(u x v =1)

23

[BE] has a clause in the inductive definition for each
boolean operator, but it suffices to have only A and —
as above:

Proposition 13.2
(AL p) EFend < (JAlp) Eeand ([Al,) E ¢

Proof:
(Al p) Ee Ay
& (AL p) E~(oe V)
& not (JA|,pu) F —e V¢
& not [((JA], u) = —e) or ((JA], 1) = —9)]
& ([Al, 1) # —~pand (JA|, p) =~
& (|Al,p) Eyand (JA],p) E ¥

24

Similarly defining satisfaction for one quantifier allows
you to define it for the other:

Proposition 13.3
(Il p) = (Fz)e & (existsa € [A|)(|A], u,a/z) F ¢

Proof:

(Al 1) = (Fz)e

< (Ml p) F~(Vz)-e

< (Il) = (Vz)=e

& not (foralla € |A])(|A|, 1, a/z) E —¢

< (forsome a € |A|)(|Al, u,a/x) £ -
& (forsomea € |A|)(JA|, p,a/x) = @

25

Fitch Proofs for FOL
The Fitch proof system of [BE] can prove FOL formulas
as well as propositional ones. We have to add six new
proof rules to deal with the new concepts of identity and
guantifiers:

e —-Intro: Derive n = n (cf. Atlas Shrugged?)

e —-Elim: From P(n) and n = m, derive P(m)

e V-Intro: (Ordinary form) If for a new variable ¢ you
derive P(c), derive Vz : P(x)

e V-Intro: (General conditional form) If from P(c),
for a new variable ¢, you derive Q(c), conclude Vz :

P(z) = Q(z)
e V-Elim: From Vz : S(x), derive S(c)
e J-Intro: From S(c), derive 3z : S(x)

e J-elim: If from S(c), for a new variable ¢, you derive
@), then you may derive @) from 3z : S(z)

26

Coming Attractions:

We will prove Fitch to be sound for FOL, following [BE]
Section 18.3 with some details on HW#4. The basic idea
IS very similar to soundness for propositional Fitch. \We
show by induction on steps of any proof that each state-
ment is true in any structure in which all of its premises
are true (instead of for any truth assignment).

Then we will prove the completeness of Fitch for FOL,
following [BE] Chapter 19 with some details on HW#5.
The goal is to prove that any FOL-valid sentence can be
proved in Fitch. We will do this as follows:

e Define an infinite set of sentences called the Henkin
theory,

e Show that any propositional extension of the Henkin
theory has a model,

e Use propositional completeness to get a propositional
Fitch proof of any FOL-valid sentence from the Henkin
theory, and finally

e Show that Iin Fitch we can eliminate every use of the
Henkin theory in this proof, to get a Fitch proof of the
FOL-valid sentence.

27

