CMPSCI 601: Recall From Last Time Lecture 9

Initial functions:

¢0)=0
olx)=x+1
(X1, ..., xn) =x;, n=12...., 1<i<n

Composition: ¢;: N* = N,1<i<m; ;h:N* -
N:

C(higr,- s gm)(@1,.. ., xx) = h(gi(T),. .., gm(T))

Primitive Recursion: ¢ : N* — N; h : N*2 — N:
fnsyns - uk) = Plg, h)(n, ys, - - - yx), given by:

FO, 91,) = 9y, -, yk)
f(n—|_17y17yk) — h(f<n7y17"°7yk)7n7y17"°7yk)

Def. The primitive recursive functions, PrimRecFcns,
Is the smallest class of functions containing the Initial
functions and closed under Composition and Primitive
Recursion.

Exercises (HW#3):

1. A function is primitive recursive iff it is computable
In Bloop.

2. Every primitive recursive function is total recursive.

3. There is a total recursive function that is not primitive
recursive.

Prop: The following functions are Primitive Recursive:

1. Mi(x) = if (x > 0) then (x — 1) else 0
2.0y = if (y < x)then (z —y) else 0

3
4. %
5

8. P L R exercise

As we will start to see now (maybe with HW#3), you can
do almost anything with primitive recursive functions:

Primitive Recursive COMP Theorem: [Kleene]
Let COMP(n, z,c,y) mean M, (x) =y, and that
¢ Is M,,’s complete computation on input z.

Then COMP is a Primitive Recursive predicate.

Proof: We will encode TM computations:

¢ = Seq(IDy, IDy, . . ., 1D;)

Where each ID; is a sequence number of tape-cell con-
tents:

IDZ — Seq(D7 A1y - .-y Ai—1, [07 ai]) Aitly- - - a?‘)

COMP(n, z,c,y)

START(Item(c,0),2) A END(Item(c, Length(c) —1),y) A
(Vi < Length(c))NEXT (n, Item(c, i), Item(c,i + 1))

o

Theorem 9.1 The following problems are decidable in
polynomial time.
EmptyNFA = {N | NisanNFA; £(N) = 0}
>*DFA = {D | DisaDFA; £(D) = %*}
MemberNFA = {(N,w) | NisanNFA; w € L(N)}
EqualDFA = {(D:,D,) | Dy, D, DFAs;, £(D;) = £(D,)}
EmptyCFL = {G | GisaCFG; L(G) = 0}

MemberCFL = {(G,w) | GisaCFG; w € L(G)}

MemberCFL = {(G,w) | GisaCFG; w € L(G)}

CYK Dynamic Programming Algorithm:

1. Assume G in Chomsky Normal Form: N — AB,
N — a.

2. lnput: w = wws...w,, G with nonterminals
S A B, ...

1 IfNiwwzw]

3. Nij = 0 otherwise

4. return(.Sy,)

N;; = if(“N = w;” € R)then1lelse0

Nij= V (@k(i<k<j A Aig A Bipry)

“N - AB” €R

CMPSCI 601: Today’s Main Theorem Lecture 9

Theorem 9.2 The following problem s co-r.e.-compl ete:
Y*CFL = {G | GisaCFG; L(G) = X5}

Proof: [J. Hartmanis, Neil’s advisor]

Y>CFL € re.:

Input: G

Define: 3% = {wyg, wy, wo, ...}

1. fori:=0tooo{

2. if w; ¢ L(G), then return(1)}

Clearly this returns 1 iff G € >*CFL.

Proposition 9.3 EMPTY is co-r.e. complete, where,
EMPTY = {n | W, =0}

Proof: Follows from HW#2 where we showed NON-
EMPTY to be r.e.-complete. [

Claim 9.4 EMPTY < >*CFL.

Corollary 9.5 >*CFL is co-r.e. complete and thus not
recursive.

How can we prove the Claim?
We need to define: g : N — {0, 1}*,

n € EMPTY <« g¢g(n) € Y*CFL

(Vo) My(z) #1 & Llg(n)) =%,

n

M, has no accepting computations < L(g(n)) = X»

Instantaneous Description (I1D)
of a computation of M,,:

M, has alphabet {0, 1}, states {0, 1, ..., ¢} where 0 is the
halting state and 1 is the start state.

AN

IDp = 10b> w wy -+ w, U

Suppose M, in state 1 looking at a “>” writes a “>” changes

AN

to state 3, and moves to the right.

ID;, = p»>3wws - w, U

YesComp(n) =

accepting

IDo#IDEAIDAIDEH ... #ID, | IDg---ID
oFFIDTH#ID2#ID5# - - - #1D; | 1Dy ' comp of M,

Lemma 9.6 For each n, YesComp(n) isa CFL.

Furthermore, thereisa function g € F(L), for all n,

L(g(n)) = YesComp(n)

S = {0,1,>,10,#,0,1,...,q¢,} where M, has g, states.

n € EMPTY <« YesComp(n)=% < g(n)e€ 3*CFL

10

Proof:

YesComp(n) = U(n) U A(n) U D(n) U Z(n)

Un) = {w € X* | wnotin form IDy# - - - #ID;}

A(n) = {w € ¥* | w doesn’t start with initial ID of M, }

D(n) = {w € ¥* | (3i)(ID;, doesn’t follow from ID;}

Z(n) = {w € ¥* | wdoesn’t end with 0 > 1 LI}

11

Thus, g : EMPTY < »*CFL

n € EMPTY < YesComp(n) = >
& g(n) € X*CFL

12

Arithmetic Hierarchy re

co-r.e.
W co-r.e. r.e complete

Recursive

Primitive Recursive

EXPTIME

PSPACE

co-NP Polynomial-Time Hierarchy NP

complete complete

co-NP NP
NP N co-NP

"truly feasible"

NC

NC 2

log(CFL) sact

NSPACE[log n]

DSPACE[log n]

1
Regular NC

ThC

L ogarithmic-Time Hierarchy AC’

13

