Initial functions:

$$\zeta()=0$$

$$\sigma(x)=x+1$$

$$\pi_i^n(x_1,\ldots,x_n)=x_i, \quad n=1,2,\ldots, \quad 1\leq i\leq n$$

Composition: $g_i: \mathbf{N}^k \to \mathbf{N}, 1 \leq i \leq m; ; h: \mathbf{N}^m \to \mathbf{N}$:

$$C(h; g_1, \ldots, g_m)(x_1, \ldots, x_k) = h(g_1(\overline{x}), \ldots, g_m(\overline{x}))$$

Primitive Recursion: $g: \mathbb{N}^k \to \mathbb{N}$; $h: \mathbb{N}^{k+2} \to \mathbb{N}$: $f(n, y_1, \dots, y_k) = \mathcal{P}(g, h)(n, y_1, \dots, y_k)$, given by:

$$egin{array}{lll} f(0,y_1,\ldots y_k) &= g(y_1,\ldots,y_k) \ f(n+1,y_1,\ldots y_k) &= h(f(n,y_1,\ldots,y_k),n,y_1,\ldots,y_k) \end{array}$$

Def: The **primitive recursive functions**, **PrimRecFcns**, is the smallest class of functions containing the Initial functions and closed under Composition and Primitive Recursion.

Exercises (HW#3):

- 1. A function is primitive recursive iff it is computable in Bloop.
- 2. Every primitive recursive function is total recursive.
- 3. There is a total recursive function that is not primitive recursive.

Prop: The following functions are Primitive Recursive:

1.
$$M_1(x) = if(x > 0) then(x - 1) else 0$$

2.
$$x \ominus y = \mathbf{if} (y \le x) \mathbf{then} (x - y) \mathbf{else} 0$$

- 3. +
- 4. *

$$5. \exp(x, y) = y^x$$

6.
$$\exp^*(x) = 2^2$$

$$7. =, \leq, <, >, \neq.$$

8.
$$P, L, R$$

exercise

As we will start to see now (maybe with HW#3), you can do almost anything with primitive recursive functions:

Primitive Recursive COMP Theorem: [Kleene]

Let COMP(n, x, c, y) mean $M_n(x) = y$, and that c is M_n 's complete computation on input x.

Then COMP is a Primitive Recursive predicate.

Proof: We will encode TM computations:

$$c = \operatorname{Seq}(\operatorname{ID}_0, \operatorname{ID}_1, \dots, \operatorname{ID}_t)$$

Where each ID_i is a sequence number of tape-cell contents:

$$ID_i = Seq(\triangleright, a_1, \dots, a_{i-1}, [\sigma, a_i], a_{i+1}, \dots, a_r)$$

$$COMP(n, x, c, y) \equiv$$

$$\begin{aligned} & \mathsf{START}(\mathsf{Item}(c,0),x) \ \land \ \mathsf{END}(\mathsf{Item}(c,\mathsf{Length}(c)-1),y) \ \land \\ & (\forall i < \mathsf{Length}(c)) \mathsf{NEXT}(n,\mathsf{Item}(c,i),\mathsf{Item}(c,i+1)) \end{aligned}$$

Theorem 9.1 The following problems are decidable in polynomial time.

EmptyNFA =
$$\{N \mid N \text{ is an NFA}; \mathcal{L}(N) = \emptyset\}$$

$$\Sigma^* \text{DFA} = \{D \mid D \text{ is a DFA}; \mathcal{L}(D) = \Sigma^*\}$$
MemberNFA = $\{\langle N, w \rangle \mid N \text{ is an NFA}; w \in \mathcal{L}(N)\}$
EqualDFA = $\{\langle D_1, D_2 \rangle \mid D_1, D_2 \text{ DFAs}; \mathcal{L}(D_1) = \mathcal{L}(D_2)\}$
EmptyCFL = $\{G \mid G \text{ is a CFG}; \mathcal{L}(G) = \emptyset\}$
MemberCFL = $\{\langle G, w \rangle \mid G \text{ is a CFG}; w \in \mathcal{L}(G)\}$

MemberCFL = $\{\langle G, w \rangle \mid G \text{ is a CFG}; w \in \mathcal{L}(G)\}$

CYK Dynamic Programming Algorithm:

- 1. Assume G in Chomsky Normal Form: $N \to AB$, $N \to a$.
- 2. **Input:** $w = w_1 w_2 \dots w_n$; G with nonterminals S, A, B, \dots
- 3. $N_{ij} \equiv \begin{cases} 1 & \text{if } N \stackrel{\star}{\to} w_i \cdots w_j \\ 0 & \text{otherwise} \end{cases}$
- 4. $\mathbf{return}(S_{1n})$

$$N_{i,i} = \mathbf{if} ("N \rightarrow w_i" \in R) \mathbf{then} \ 1 \mathbf{else} \ 0$$

$$N_{i,j} = \bigvee_{N \to AB^{"} \in R} (\exists k) (i \leq k < j \land A_{i,k} \land B_{k+1,j})$$

CMPSCI 601:

Today's Main Theorem

Lecture 9

Theorem 9.2 The following problem is co-r.e.-complete:

$$\Sigma^{\star} CFL = \{G \mid G \text{ is a CFG}; \ \mathcal{L}(G) = \Sigma_G^{\star}\}$$

Proof: [J. Hartmanis, Neil's advisor]

 $\overline{\Sigma^{\star}\text{CFL}} \in \text{r.e.}$:

Input: G

Define: $\Sigma_G^{\star} = \{w_0, w_1, w_2, \ldots\}$

- 1. **for** i := 0 to ∞ {
- 2. if $w_i \notin \mathcal{L}(G)$, then return(1)}

Clearly this returns 1 iff $G \in \overline{\Sigma^*CFL}$.

Proposition 9.3 *EMPTY is co-r.e. complete, where,*

$$EMPTY = \{n \mid W_n = \emptyset\}$$

Proof: Follows from HW#2 where we showed NON-EMPTY to be r.e.-complete.

Claim 9.4 $EMPTY \leq \Sigma^* CFL$.

Corollary 9.5 Σ^* CFL is co-r.e. complete and thus not recursive.

How can we prove the Claim?

We need to define: $g: \mathbb{N} \to \{0, 1\}^*$,

$$n \in \text{EMPTY} \quad \Leftrightarrow \quad g(n) \in \Sigma^{\star}\text{CFL}$$

$$(\forall x) M_n(x) \neq 1 \quad \Leftrightarrow \quad \mathcal{L}(g(n)) = \Sigma_n^{\star}$$

 M_n has no accepting computations \Leftrightarrow $\mathcal{L}(g(n)) = \Sigma_n^{\star}$

Instantaneous Description (ID)

of a computation of M_n :

 M_n has alphabet $\{0, 1\}$, states $\{\hat{0}, \hat{1}, \dots, \hat{q}\}$ where $\hat{0}$ is the halting state and $\hat{1}$ is the start state.

$$\mathrm{ID}_0 = \hat{1} \triangleright w_1 w_2 \cdots w_r \sqcup$$

Suppose M_n in state $\hat{1}$ looking at a " \triangleright " writes a " \triangleright " changes to state $\hat{3}$, and moves to the right.

$$ID_1 = \triangleright \hat{3} w_1 w_2 \cdots w_r \sqcup$$

$$\operatorname{YesComp}(n) =$$

$$\left\{ \text{ID}_0 \# \text{ID}_1^R \# \text{ID}_2 \# \text{ID}_3^R \# \cdots \# \text{ID}_t \mid \text{ID}_0 \cdots \text{ID}_t \xrightarrow{\text{accepting} \\ \text{comp of } M_n} \right\}$$

Lemma 9.6 For each n, $\overline{\text{YesComp}(n)}$ is a CFL.

Furthermore, there is a function $g \in F(\mathbf{L})$, for all n,

$$\mathcal{L}(g(n)) = \overline{\text{YesComp}(n)}$$

$$\Sigma_n = \{0, 1, \triangleright, \sqcup, \#, \hat{0}, \hat{1}, \ldots, \hat{q_n}\}$$
 where M_n has q_n states.

$$n \in \mathsf{EMPTY} \quad \Leftrightarrow \quad \overline{\mathsf{YesComp}(n)} = \Sigma_n^\star \quad \Leftrightarrow \quad g(n) \in \Sigma^\star \mathsf{CFL}$$

Proof:

$$\overline{\mathrm{YesComp}(n)} = U(n) \cup A(n) \cup D(n) \cup Z(n)$$

$$U(n) = \{ w \in \Sigma^* \mid w \text{ not in form } \mathrm{ID}_0 \# \cdots \# \mathrm{ID}_t \}$$

$$A(n) = \{ w \in \Sigma^* \mid w \text{ doesn't start with initial ID of } M_n \}$$

$$D(n) \, = \, \{ w \in \Sigma^{\star} \, \mid \, (\exists i) (\mathrm{ID}_{i+1} \ \mathrm{doesn't \ follow \ from \ } \mathrm{ID}_i \}$$

$$Z(n) = \{ w \in \Sigma^* \mid w \text{ doesn't end with } \hat{0} \triangleright 1 \sqcup \}$$

Thus, $g: \mathsf{EMPTY} \leq \Sigma^{\star}\mathsf{CFL}$

$$n \in \mathsf{EMPTY} \; \Leftrightarrow \; \overline{\mathsf{YesComp}(n)} = \Sigma_n^\star$$

$$\Leftrightarrow \; g(n) \in \Sigma^\star \mathsf{CFL}$$

