
CMPSCI 601: Recall From Last Time Lecture 8

Definition: We say that
�

is reducible to � ,
� � � , iff�

total, recursive � � N � N,

�	��
 �
N  ��
 � �  � � � ��
  � � 

[In the future we will insist that � � � �
L  .]

Theorem: Suppose
� � � . Then,

1. If � is r.e., then
�

is r.e..

2. If � is co-r.e., then
�

is co-r.e..

3. If � is Recursive, then
�

is Recursive.

Definition: � is r.e.-complete iff

1. � �
r.e., and

2.
�	��� �

r.e.  ��� � � 
Theorem: � , HALT, and

� �������
are r.e. complete.
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CMPSCI 601: Reductions Lecture 8

Def: We say that
�

is reducible to � ,
� � � , iff� � � �

L  ,
�	��
 �

N  ��
 � �  � � � ��
  � � 

Intuition:
� � � iff the placement of a very simple

front end � before a � -recognizer creates an
�

-recognizer.

��� � ��� � ��� i.e.,
�	�
	  � ��� ��	  � �� � � ��	   

S = f T

The Reduction Game: To build a reduction, � , from�
to � you must solve the following puzzle:

“For each input,



, what membership question, � ��
  ,
can I ask � such that the answer is the membership ques-
tion


 ��� �
.”
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Rice-Myhill-Shapiro Theorem:

Our proof that
� �������

was r.e.-complete had little to do
with the numbers 0 or 17. A very similar argument can
be used to show that “any non-trivial property of Turing
machines is undecidable”. (See [P], Theorem 3.2, page
62.)

Theorem 8.1 Let
�

be a set other than � or N such that
if � � and � � are equivalent machines, � and � are either
both in

�
or both not in

�
. Then

�
is not recursive.
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Proof:

Suppose that the (numbers of) machines that never halt
are not in

�
. (What if they aren’t? See HW#3.) Since

�
is nonempty, pick a number � so that � � � �

.

We will reduce � to
�

, which means we must define a
total recursive function � so that � � � iff � � �  � �

.
This means that for any machine � � , we must build a
machine � ��� ��� that will have the property necessary for�

iff � � accepts � . We’ll do this using our assumptions.
If � � accepts � , � �	� ��� will be equivalent to � � and thus� � �  will be in

�
. If � � does not accept � , � �	� ��� will

never halt and thus � � �  will not be in
�

.

This is easy. We design � ��� ��� so that it first runs � � on
� , then (if it finishes that job) runs � � on the original
input. This machine simulates � � if � � accepts � and
never halts otherwise.

Since � � �
,
�

cannot be recursive. (We cannot say
that

�
is r.e.-complete because it might not be r.e., in fact

“most” such
�

’s are not.) 
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CMPSCI 601: Primitive Recursive Functions Lecture 8

On HW#2 we defined the programming language Bloop,
with integer variables and bounded loops. It turns out that
the class of functions from N to N that are implementable
in Bloop is a very well studied class called the primitive
recursive functions.

You may have wondered whether “recursion” as you know
it from programming has anything to do with “recursive
functions” in this course. The name indeed comes from
defining functions recursively. We’ll eventually see the
definition of “general recursive functions” that is equiva-
lent to Turing machines. But first we’ll give the definition
of a less powerful kind of recursion. It defines functions
that are guaranteed to halt, but can’t define all total recur-
sive functions.

On HW#3 we’ll prove that there are recursive functions
that are not primitive recursive, and that the primitive
recursive functions are exactly those implementable in
Bloop.
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Initial functions:� �  � �
� � 	  � 	 � �
� �� ��	 �

������� � 	 �  � 	 � � � � �
�
	 ������� � � � � � �

Composition: � � � N � � N �
� � � �  � ��� � N � �

N:� � ��� � � ������� ��� �  ��	 � ������� � 	 �  � � � � � � 	  ������� ��� �
� 	  

Primitive Recursion: � � N � � N
� � � N ����� � N:� � � ��� � ������� ��� �  � � � � � �  � � ��� � ��������� �  , given by:

� � � ��� � ��������� �  � � � � � ������� ��� � � � � � �
��� � ��������� �  � � � � � � ��� � ������� ��� �  � � ���

�
������� ��� � 

Definition 8.2 The primitive recursive functions
(PrimRecFcns) is the smallest class of functions con-
taining the Initial functions and closed under Composi-
tion and Primitive Recursion.
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Proposition 8.3 The following are in PrimRecFcns:

1. � � ��	  � if
��	 � �  then

��	 � �  else �
2.
	 � � � if

� � � 	  then
��	 � �  else �

3.
�

4. �
5. ����� ��	

���  � �
	
6. ������� ��	  � if

� 	 � �  then
�

else 	����� � � 	��
� �

����� � ��	  � 	 �
��� ����� �� 	
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Gödel discovered that you can code sequences in PrimRecFcns,
which he did using number theory:

Proposition 8.4 Prime � PrimeF
�

PrimRecFcns, where,

Prime
��	  � if

�
“
	

is prime”  then
�

else �
PrimeF

� �  � prime number � , i.e, PrimeF
� �  � 	 , PrimeF

� �  ��
, PrimeF

� 	  � � , PrimeF
� �  � � , PrimeF

���  � � �
.

Proof:
	�� � � � ��� � �  ��	 � � � 

Prime
��	  � 	 � � 	 �	� � 
 	  � � � 	 � � � � 

NextPrime
��	  � ���� � ��	 � �  	 �

� � � � 	 	
Prime

� � ��
PrimeF

� �  � 	
PrimeF

��	 � �  � NextPrime
�
PrimeF

� 	   
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Proposition 8.5

IsSeq � Length � Item
�

PrimRecFcns, where,

Seq
��� �

�
� �
������� � � �  � 	 ��� �

� � ��� �
�
���	� PrimeF

� �  ��
 �
�

IsSeq
� �  � if

� �
is a Sequence number 
then

�
else �

Length
�
Seq

��� �
�
� �
������� � � �   � � � �

Item
�
Seq

��� �
�
� �
������� � � �  � �  � � �

Proof:

Good
��	
�
�  � �	� � 
 �  � � � 
 	 	

PrimeF
� �  � � 

 � � � 	 	
PrimeF

� � �� � �  
IsSeq

� �  � � � 	 
 �  Good
��	
�
� 

Length
� �  � � � 	 
 � �

Good
� 	
�
�  �

Item
� �
� �  � �� � 
 � �

IsSeq
� �  	

PrimeF
� � �� �

� � �
	

PrimeF
� � �� ��� � � � �
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As your intuition about Bloop should begin to tell you,
and your work on HW#3 should confirm, we can do al-
most anything with primitive recursive functions:

Primitive Recursive COMP Theorem: [Kleene]

Let COMP
� � � 	 ��� ���  mean � � ��	  � � , and that

� is � � ’s complete computation on input
	

.

Then COMP is a Primitive Recursive predicate.

Proof: We will encode TM computations:

� � Seq
�
ID

�
� ID

�
������� � ID � 

Where each ID � is a sequence number of tape-cell con-
tents:

ID � � Seq
���
�
� �
������� � � � �

�
�
� � � � ��� � � � �

�
������� � �	� 

COMP
� � � 	 ��� ���  


START
�
Item

� � � �  � 	  	
END

�
Item

� � � Length
� �  � �  ���  	

�	� � 
 Length
� �   NEXT

� � � Item
� � � �  � Item

� � � � � �  
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Theorem 8.6 The following problems are decidable in
polynomial time.

EmptyNFA � ��� � � is an NFA
��� � �  � � �

���
DFA � ��� � � is a DFA

��� � �  � �	� �
MemberNFA � ��
�� �


  � � is an NFA
� 
 � � � �  �

EqualDFA � ��
�� �
� � �

 � � �
� � � DFAs

��� � � �  � � � � � ��
EmptyCFL � ��� � � is a CFG

��� � �  � � �
MemberCFL � ��
�� � 
  � � is a CFG

� 
 � � � � ��
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EmptyNFA � �
�

���
DFA � ��� � � is a DFA

��� � �  � �	� �
� � ���

DFA � � �
EmptyNFA

MemberNFA � ��
�� �

  � � is an NFA

� 
 � � � �  �

40 1 2 3

0,1

1 0,1 0,1 0,1

12



EqualDFA � ��
�� �
� � �

 � � � � �  � � � � �  �

�� �

� � �
 �

EqualDFA � � � ��� � � ��
� � ��� � � 

�
EmptyNFA

EmptyCFL � � � �
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MemberCFL � ��
�� � 
  � � is a CFG
� 
 � � � � ��

CYK Dynamic Programming Algorithm:

1. Assume � in Chomsky Normal Form: � � � �
,

� � �
.

2. Input:

 � 
 � 


� �����

 � ; � with nonterminals�

�
�
�
�
�������

3. � � � 

���� ���
�

if �
�� 
 � �	��� 
 �� otherwise

4. return
� � � � 

� � � � � if
�
“ � � 
 � ” � �  then

�
else �

� � � � � �
“ �	��
� ” ���

� ���  � � � � 
 � 	 � � � �
	 �

���
� � � 
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co-r.e.
complete

Arithmetic Hierarchy r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP 

NP 

U

co-NP

P

NC 2

log(CFL)

NC

NC

SAC

ThC

"truly feasible"

Regular

NSPACE[log n]

Logarithmic-Time Hierarchy AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1

0
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