CMPSCI 601: Recall From Last Time Lecture 7

Th 6.2:  The busy beaver function, o(n), is eventually
larger than any total, recursive function.

Th. 6.3: There is a Universal Turing Machine U such
that,

U(P(n,m)) = My(m)
Thm. 6.4: (Unsolvability of Halting Problem) Let,
HALT = {P(n,m) | TM M,(m) eventually halts}

Then, HALT isr.e. but not recursive.

Listing of all r.e. sets: Wo, Wi, Wa, - -

Wi = A{n| Mi(n) =1}
Cor. 6.6: Let,
K ={n|M(mn=1} = {n]|UPnn)=1}
={n | neW,}

Then,
K € re. —Recursive.



Notation: M, (x)] means that TM M, converges on in-
put z, I.e.,

My(z)l & My(z)eN & M, (z)#/

Fundamental Th. of r.e. Sets: Let S C N. T.FA.E.

1. S is the domain of a partial, recursive function, i.e.,

2. S = ( or S is the range of a total, recursive function,
ie.,, S = 0 or S =range(M,(-)) = M,(N), for some
total, recursive function M, ().

3. S is the range of a partial, recursive function, i.e.,
S = M,(N), forsomen € N.

4, Sisre., e, S=W,, forsomen € N



Proof: (Please learn this proof!)
(1= 2): Assume (1), S = {z | M, (x)|}.
case 1: S = (. Thus S satisfies (2).
case 2: S £ (. letag € S.
From M,, compute M,., which on input z does the follow-
ing:
l.x:=L(2); y:=R(z) //le,z=Px,y)
2. run M, (x) for y steps

3. if it halts then return(z)
4. else return(ay)

Claim: S = M,(N) = {M,(z) | x € N}.
M,.(N)C S

M,(N) 2 S

Suppose x € S.

Thus M, (z) converges in some number y of steps.
Therefore, M,.(P(z,y)) = x.

Non-computable step in construction: no way to tell if
we are in case 1 or case 2.



(2) = (3): Assume (2). If S = () then S = My(N) where
M is a Turing machine that halts on no inputs.

Otherwise, S = M,(N), i.e., S is the range of the partial,
recursive function M,,(-).

Note: Eventhough M, (-) is total, it is still considered a
“partial, recursive function”. However, of course, M,(-)
IS not “strictly partial”.



(3) = (4): Assume (3), S = M,(N).
From M,, construct M, which on input = does the fol-
lowing:

1. fori:=11t0 00 {
2. run M,(0), M, (1), ..., M,(z) for i steps each.
3. If any of these output x, then return(1)}

above construction called dove-tailing

Claim:  M,(-) = ps(+).

If x € S, then x € range(M,,(-))

M,(j) = =, computation takes k steps, for some j, k
Thus, at round ¢ = max(j, k), My(z) will halt and output
“17.

If 2z ¢ S, then M,(z) will never halt.

Thus, S = Wy = {z | My(z)=1}.



(4) = (1): Assume (4), and thus S = W,,.
S = {i| MJ()=1}

From M,,, construct M, which on input = does the fol-
lowing:

1. run M,(x)
2.1f (M, (x) = 1) then return(l)
3. else run forever

S = Az | Ma(z)|}

Thus, S = dom(My(-)) = {z | My(z)l} . [ )



CMPSCI 601: Reductions Lecture 7

Definition 7.1 We say that S is reducibleto 7" (S < T
Iff 3 total, recursive f : N — N,

(Vw € N) (w € S) & (flw) eT)

)
Note: Later we require f € F(DSPACE(logn]).
A0,17 - {TL | Mn(O) — 17}
Claim: K < Ag7.
Proof: Define f(n) as follows:
| erase Input; If 1 then write 17
My = write n M, else loop

ne K & Mn(n) =1 & Mf(n)(()) =17 & f(n) S A0,17
[



Fundamental Th. of Reductions: If S < T, then,

1. If T isr.e., then Sisr.e..
2. If T 1s co-r.e., then S IS co-r.e..
3. If T is Recursive, then S is Recursive.

Moral: Suppose S < T'. Then,

o If T iseasy, thensois S.
e If Sis hard, thenso is T'.

Proof: Let f: S <T,ie., (Vx)(z €S & f(x)eT)

1. Suppose T' = W; = {x | M;(x) = 1}.
From M; compute the TM M, which on input z does
the following:

(a) compute f(x)
(b) run M;(f(z)) My | =|f| M,

(z€8) & (flx)eT) & (Mi(f(z) =1) & (My(z)="
Therefore, S = Wy, and S is r.e. as desired.
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f:S<T, Le., Vx)(z e S & f(z)eT)
2.Note: S<T & S<T.

T cco-re. Tere. Sere. S ecore.

3.T € Recursive = (T ere.ANT e€co-re.) =

(Sere. AN Seco-re) = Se€Recursive



Definition 7.2 Let C C N. C'is r.e.-complete iff

1.C €re., and
2. (VAere) (A<C()

Intuition: C'is a “hardest” r.e. set. In the “<” ordering,
It is above all other r.e. sets. [ )
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Theorem 7.3 K isr.e. complete.

Proof: Let A € re., 1.e., A = W, for some 1.

Wanted: (Vn)ne A < f(n) e K)

Define the recursive function f which on input n com-

putes the following TM:

My = | Erase Input Write n

M;

ncA & Mn)=1 <& (Vo)Myy(z)=1

& Myu(f)=1 & f(n)eK
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Proposition 7.4 Suppose that C' is r.e.-complete and the
following hold:

1.5 €re., and
2.0 <S8

then S isr.e.-complete.

Proof: Show: (VA € re.)(A < S)
Know: (VA € re.)(A < C)

Follows by transitivity of <: A< (C < S. [

Corollary 7.5 Ay 17 Isr.e.-complete.
Every r.e.-complete set isr.e. and not recursive.
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HALT = {P(n,m) | TM M,(m) eventually halts}
Proposition 7.6 HALT isr.e.-complete.

Proof: We have already seen that HALT is r.e. It thus
suffices to show that K < HALT.

We want to build a total, recursive f such that for all
w € N,

weK <<  f(w)eHALT

Myw)=1 <  Myw)(R(f(w))) halts

That is, we want,
M,(w) =1 & M,(r) halts, where f(w) = P({,r)

Given w, let, M,y =

Erase input Write w M, igéetg?\r,‘err‘gét

Letting f(w) = P({(w),0), we have that
My(w) =1 <& My, (0)halts <« f(w) € HALT#
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