
CMPSCI 601: Recall From Last Time Lecture 7

Th 6.2: The busy beaver function, ������� , is eventually
larger than any total, recursive function.

Th. 6.3: There is a Universal Turing Machine � such
that,

� �	� ����
� ��� � � ����� �

Thm. 6.4: (Unsolvability of Halting Problem) Let,

HALT � ��� ����
�� � � TM � ����� � eventually halts �
Then, HALT is r.e. but not recursive.

Listing of all r.e. sets: � � 
 � � 
 � � 
�� �!�
� " � �#� ��� " �����$� % �

Cor. 6.6: Let,
& � �#� ��� �'���(�)� % � � �*� � � �+� ����
,�(���$� % �

� �#� �$� - � � �
Then, & - r.e. . Recursive /
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Notation: � �'��� ��� means that TM � � converges on in-
put � , i.e.,

� �'��� ��� � � �'��� � - N � � ����� ���� 	

Fundamental Th. of r.e. Sets: Let 
 � N. T.F.A.E.

1. 
 is the domain of a partial, recursive function, i.e.,
�� �(� � 
 � dom �+� � ��� ��� � ��� - N ��� � ��� ��� � �

2. 
 � � or 
 is the range of a total, recursive function,
i.e., 
 � � or 
 = range( � � � � � ) = � � � N � , for some
total, recursive function � � ��� � .

3. 
 is the range of a partial, recursive function, i.e.,


 � � �'� N � 
 for some � - N /

4. 
 is r.e., i.e., 
 � � � , for some � - N
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Proof: (Please learn this proof!)
� %�� � � : Assume (1), 
 � ��� ��� ����� ��� � .

case 1: 
 � � . Thus 
 satisfies (2).

case 2: 
 �� � . let � � - 
 .

From � � compute � � , which on input � does the follow-
ing:

1. � � � � � � �	��
 � � � � � � � i.e., � � � ��� 
�
 �
2. run � ����� � for 
 steps

3. if it halts then return( � )

4. else return( � � )

Claim: 
 � � � � N � � ��� � ��� � � � - N � .
� � � N � � 

� � � N ��� 

Suppose � - 
 .

Thus � � ��� � converges in some number 
 of steps.

Therefore, � � �+� ��� 
�
 ��� � � .

Non-computable step in construction: no way to tell if
we are in case 1 or case 2.
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� � � � � � � : Assume (2). If 
 � � then 
 � � � � N � where� � is a Turing machine that halts on no inputs.

Otherwise, 
 � � �'� N � , i.e., 
 is the range of the partial,
recursive function � � � � � .
Note: Even though � ��� � � is total, it is still considered a
“partial, recursive function”. However, of course, � � � � �
is not “strictly partial”.
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� � � � ����� : Assume (3), 
 � � �'� N � .
From � � construct � � , which on input � does the fol-
lowing:

1. for � � � % to � �
2. run � ������� 
 � ����% � 
 / /!/ 
 � �'� � � for � steps each.

3. if any of these output � , then return(1) �

above construction called dove-tailing

Claim: � � � � �$� �	� ��� � .
If � - 
 , then � - range( � � ��� � )
� � ��
 �)� � , computation takes � steps, for some 
 
 �
Thus, at round � �  ��� ��
 
 � � , � � ��� � will halt and output
“1”.

If � �- 
 , then � �!��� � will never halt.

Thus, 
 � � � � ��� ��� � ��� � � % � .
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����� � � % � : Assume � � � , and thus 
 � � � .

 � � � ��� ��� � � � % �

From � � , construct � � , which on input � does the fol-
lowing:

1. run � ����� �
2. if �+� � ��� �$� % � then return(1)

3. else run forever


 � ��� ��� � ��� ��� �

Thus, 
 � dom �	� � � � ��� � ��� ��� � ��� ��� � .
�
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CMPSCI 601: Reductions Lecture 7

Definition 7.1 We say that 
 is reducible to � � 
 � � �
iff � total, recursive � � N � N,

����� - N � ��� - 
 � � � � ��� � - � �
�

Note: Later we require � - 	 � DSPACE 
����� ��� � .
� ��� ��� � �*� ��� �'�����$� %�� �

Claim:
& � � ��� ��� .

Proof: Define � ����� as follows:

� ��� ��� � erase input;
write � � � if 1 then write 17

else loop

� - & � � ������� � % � � ��� ��� �����$� %�� � � ����� - � ��� ���
�
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Fundamental Th. of Reductions: If 
 � � , then,

1. If � is r.e., then 
 is r.e..

2. If � is co-r.e., then 
 is co-r.e..

3. If � is Recursive, then 
 is Recursive.

Moral: Suppose 
 � � . Then,

� If � is easy, then so is 
 .
� If 
 is hard, then so is � .

Proof: Let � � 
 � � , i.e., ��� � � ��� - 
 � � ��� � - � �
1. Suppose � � � " � � � ��� " ��� � � % � .

From � " compute the TM � "�� which on input � does
the following:

(a) compute � ��� �
(b) run � " � � ��� � � � "�� � � � "

��� - 
 � � � � ��� � - � � � �	� " � � ��� ���$� % � � �+� "�� ��� � � %
Therefore, 
 � � " � , and 
 is r.e. as desired.
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� � 
 � � 
 i.e., ��� � � ��� - 
 � � ��� � - � �

2. Note: 
 � � � 
 � � .

� - co-r.e. � - r.e. 
 - r.e. 
 - co-r.e.

3. � - Recursive � � � - r.e.
� � - co-r.e. � �

� 
 - r.e.
� 
 - co-r.e. � � 
 - Recursive

�
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Definition 7.2 Let � � N. � is r.e.-complete iff

1. � - r.e., and

2. ��� � - r.e. � � � � � �

Intuition: � is a “hardest” r.e. set. In the “ � ” ordering,
it is above all other r.e. sets.

�
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Theorem 7.3
&

is r.e. complete.

Proof: Let
� - r.e., i.e.,

� � � " for some � .

Wanted: ��� ��� ��� - � � � ���(� - & �

Define the recursive function � which on input � com-
putes the following TM:

� � � ��� � Erase input Write � � "

� - � � � " ���(�)� % � ��� � ��� ��� ��� ��� � � %
� � ��� ��� � � �������$� % � � ����� - &

�
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Proposition 7.4 Suppose that � is r.e.-complete and the
following hold:

1. 
 - r.e., and

2. � � 


then 
 is r.e.-complete.

Proof: Show: ��� � - r.e. � � � � 
 �

Know: ��� � - r.e. � � � � � �

Follows by transitivity of � :
� � � � 
 .

�

Corollary 7.5
� ��� ��� is r.e.-complete.

Every r.e.-complete set is r.e. and not recursive.
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HALT � ��� ����
�� � � TM � ����� � eventually halts �
Proposition 7.6 HALT is r.e.-complete.

Proof: We have already seen that HALT is r.e. It thus
suffices to show that

& � HALT.

We want to build a total, recursive � such that for all� - N,

� - & � � ��� � - HALT

� � ��� � � % � � � ��� � � � � � � � � ��� ����� halts

That is, we want,
� � ��� � � % � � � ���'� halts, where � � � �)� � ����
��'�
Given � , let, � � � � � �

Erase input Write � � � if 1 then halt
else diverge

Letting � ��� � � � ������� � 
 ��� , we have that
� � ��� �)� % � � � � � � ����� halts � � ��� � - HALT

�
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co-r.e.
complete

Arithmetic Hierarchy r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP 

NP 

U

co-NP

P

NC 2

log(CFL)

NC

NC

SAC

ThC

"truly feasible"

Regular

NSPACE[log n]

Logarithmic-Time Hierarchy AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1

0
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