CMPSCI 601:

Recall From Last Time

Lecture 7

Th 6.2: The busy beaver function, $\sigma(n)$, is eventually larger than any total, recursive function.

Th. 6.3: There is a *Universal Turing Machine U* such that,

$$U(P(n,m)) = M_n(m)$$

Thm. 6.4: (Unsolvability of Halting Problem) Let,

HALT = $\{P(n,m) \mid TM M_n(m) \text{ eventually halts}\}$

Then, HALT is r.e. but not recursive.

Listing of all r.e. sets: W_0, W_1, W_2, \cdots

$$W_i = \{n \mid M_i(n) = 1\}$$

Cor. 6.6: Let,

$$K = \{n \mid M_n(n) = 1\} = \{n \mid U(P(n,n)) = 1\}$$

= $\{n \mid n \in W_n\}$

Then,

$$K \in \mathbf{r.e.} - \mathbf{Recursive}$$
.

Notation: $M_n(x) \downarrow$ means that TM M_n converges on input x, i.e.,

$$M_n(x)\downarrow \Leftrightarrow M_n(x) \in \mathbf{N} \Leftrightarrow M_n(x) \neq \nearrow$$

Fundamental Th. of r.e. Sets: Let $S \subseteq \mathbb{N}$. T.F.A.E.

1. S is the domain of a partial, recursive function, i.e.,

$$(\exists n)(S = \text{dom}(M_n(\cdot)) = \{x \in \mathbb{N} \mid M_n(x)\downarrow\})$$

- 2. $S = \emptyset$ or S is the range of a total, recursive function, i.e., $S = \emptyset$ or $S = \text{range}(M_n(\cdot)) = M_n(\mathbf{N})$, for some total, recursive function $M_n(\cdot)$.
- 3. S is the range of a partial, recursive function, i.e.,

$$S = M_n(\mathbf{N}), \text{ for some } n \in \mathbf{N}.$$

4. S is r.e., i.e., $S = W_n$, for some $n \in \mathbb{N}$

Proof: (Please learn this proof!)

$$(1 \Rightarrow 2)$$
: Assume (1), $S = \{x \mid M_n(x)\downarrow\}$.

case 1: $S = \emptyset$. Thus S satisfies (2).

case 2:
$$S \neq \emptyset$$
. let $a_0 \in S$.

From M_n compute M_r , which on input z does the following:

1.
$$x := L(z)$$
; $y := R(z)$ // i.e., $z = P(x, y)$

- 2. run $M_n(x)$ for y steps
- 3. if it halts then return(x)
- 4. **else return** (a_0)

Claim:
$$S = M_r(\mathbf{N}) = \{M_r(x) \mid x \in \mathbf{N}\}$$
.

$$M_r(\mathbf{N}) \subseteq S$$

$$M_r(\mathbf{N}) \supseteq S$$

Suppose $x \in S$.

Thus $M_n(x)$ converges in some number y of steps.

Therefore,
$$M_r(P(x,y)) = x$$
.

Non-computable step in construction: no way to tell if we are in case 1 or case 2.

 $(2) \Rightarrow (3)$: Assume (2). If $S = \emptyset$ then $S = M_0(\mathbf{N})$ where M_0 is a Turing machine that halts on no inputs.

Otherwise, $S = M_n(\mathbf{N})$, i.e., S is the range of the partial, recursive function $M_n(\cdot)$.

Note: Even though $M_n(\cdot)$ is total, it is still considered a "partial, recursive function". However, of course, $M_n(\cdot)$ is not "strictly partial".

$$(3) \Rightarrow (4)$$
: Assume (3) , $S = M_n(\mathbf{N})$.

From M_n construct M_d , which on input x does the following:

- 1. **for** i := 1 to ∞ {
- 2. run $M_n(0), M_n(1), \ldots, M_n(i)$ for i steps each.
- 3. **if** any of these output x, **then return**(1)}

above construction called dove-tailing

Claim: $M_d(\cdot) = p_S(\cdot)$.

If $x \in S$, then $x \in \text{range}(M_n(\cdot))$

 $M_n(j) = x$, computation takes k steps, for some j, k

Thus, at round $i = \max(j, k)$, $M_d(x)$ will halt and output "1".

If $x \notin S$, then $M_d(x)$ will never halt.

Thus,
$$S = W_d = \{x \mid M_d(x) = 1\}$$
.

 $(4) \Rightarrow (1)$: Assume (4), and thus $S = W_n$.

$$S = \{i \mid M_n(i) = 1\}$$

From M_n , construct M_d , which on input x does the following:

- 1. run $M_n(x)$
- 2. if $(M_n(x) = 1)$ then return(1)
- 3. **else** run forever

$$S = \{x \mid M_d(x)\downarrow\}$$

Thus,
$$S = \text{dom}(M_d(\cdot)) = \{x \mid M_d(x)\downarrow\}$$
.

CMPSCI 601:

Reductions

Lecture 7

Definition 7.1 We say that S is *reducible* to T ($S \leq T$) iff \exists total, recursive $f : \mathbb{N} \to \mathbb{N}$,

$$(\forall w \in \mathbf{N}) \quad (w \in S) \qquad \Leftrightarrow \qquad (f(w) \in T)$$

Note: Later we require $f \in F(\mathbf{DSPACE}[\log n])$.

$$A_{0,17} = \{n \mid M_n(0) = 17\}$$

Claim: $K \leq A_{0,17}$.

Proof: Define f(n) as follows:

$$M_{f(n)} = \begin{bmatrix} ext{erase input;} & M_n \end{bmatrix} \quad M_n \quad \begin{bmatrix} ext{if 1 then write 17} \\ ext{else loop} \end{bmatrix}$$

$$n \in K \Leftrightarrow M_n(n) = 1 \Leftrightarrow M_{f(n)}(0) = 17 \Leftrightarrow f(n) \in A_{0,17}$$

Fundamental Th. of Reductions: If $S \leq T$, then,

- 1. If T is **r.e.**, then S is **r.e.**.
- 2. If T is co-r.e., then S is co-r.e.
- 3. If T is **Recursive**, then S is **Recursive**.

Moral: Suppose $S \leq T$. Then,

- \bullet If T is easy, then so is S.
- \bullet If S is hard, then so is T.

Proof: Let $f: S \leq T$, i.e., $(\forall x)(x \in S \Leftrightarrow f(x) \in T)$

1. Suppose $T = W_i = \{x \mid M_i(x) = 1\}.$

From M_i compute the TM $M_{i'}$ which on input x does the following:

(a) compute f(x)

(b) run
$$M_i(f(x))$$

$$(x \in S) \Leftrightarrow (f(x) \in T) \Leftrightarrow (M_i(f(x)) = 1) \Leftrightarrow (M_{i'}(x) = 1)$$

Therefore, $S = W_{i'}$, and S is r.e. as desired.

$$f: S \leq T$$
, i.e., $(\forall x)(x \in S \Leftrightarrow f(x) \in T)$

2. Note: $S \leq T \quad \Leftrightarrow \quad \overline{S} \leq \overline{T}$.

 $T \in \text{co-r.e.}$ $\overline{T} \in \text{r.e.}$ $\overline{S} \in \text{r.e.}$ $S \in \text{co-r.e.}$

3. $T \in \mathbf{Recursive} \implies (T \in \mathbf{r.e.} \land T \in \mathbf{co-r.e.}) \implies$

$$(S \in \mathbf{r.e.} \land S \in \mathbf{co-r.e.}) \Rightarrow S \in \mathbf{Recursive}$$

Definition 7.2 Let $C \subseteq \mathbb{N}$. C is r.e.-complete iff

- 1. $C \in \mathbf{r.e.}$, and
- 2. $(\forall A \in \mathbf{r.e.}) \quad (A \leq C)$

Intuition: C is a "hardest" r.e. set. In the " \leq " ordering, it is above all other r.e. sets.

Theorem 7.3 *K* is r.e. complete.

Proof: Let $A \in \text{r.e.}$, i.e., $A = W_i$ for some i.

Wanted:
$$(\forall n)(n \in A \Leftrightarrow f(n) \in K)$$

Define the recursive function f which on input n computes the following TM:

$$n \in A \Leftrightarrow M_i(n) = 1 \Leftrightarrow (\forall x) M_{f(n)}(x) = 1$$
 $\Leftrightarrow M_{f(n)}(f(n)) = 1 \Leftrightarrow f(n) \in K$

Proposition 7.4 Suppose that C is r.e.-complete and the following hold:

1.
$$S \in \mathbf{r.e.}$$
, and

$$2. C \leq S$$

then S is r.e.-complete.

Proof: Show: $(\forall A \in \mathbf{r.e.})(A \leq S)$

Know: $(\forall A \in \mathbf{r.e.})(A \leq C)$

Follows by transitivity of \leq : $A \leq C \leq S$.

Corollary 7.5 $A_{0,17}$ is r.e.-complete.

Every r.e.-complete set is r.e. and not recursive.

HALT = $\{P(n,m) \mid TM M_n(m) \text{ eventually halts}\}$

Proposition 7.6 HALT is r.e.-complete.

Proof: We have already seen that HALT is r.e. It thus suffices to show that $K \leq \text{HALT}$.

We want to build a total, recursive f such that for all $w \in \mathbb{N}$,

$$w \in K \quad \Leftrightarrow \quad f(w) \in \mathsf{HALT}$$

$$M_w(w) = 1 \quad \Leftrightarrow \quad M_{L(f(w))}(R(f(w))) \text{ halts}$$

That is, we want,

$$M_w(w) = 1 \qquad \Leftrightarrow \qquad M_\ell(r) \text{ halts,} \quad \text{where } f(w) = P(\ell, r)$$

Given w, let, $M_{\ell(w)} =$

Erase input Write
$$w$$
 if 1 then halt else diverge

Letting $f(w) = P(\ell(w), 0)$, we have that

$$M_w(w) = 1 \quad \Leftrightarrow \quad M_{\ell(w)}(0) \text{ halts} \quad \Leftrightarrow \quad f(w) \in \mathsf{HALT} \spadesuit$$

