Def: DTIME, **NTIME**, **DSPACE**, measured on **Multi-tape Turing Machines**.

Th: $\mathbf{DTIME}[t(n)] \subseteq \mathbf{RAM}\text{-}\mathbf{TIME}[t(n)] \subseteq \mathbf{DTIME}[(t(n))^3]$

$$\mathbf{L} \equiv \mathbf{DSPACE}[\log n]$$
$$\mathbf{P} \equiv \mathbf{DTIME}[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} \mathbf{DTIME}[n^i]$$

NP
$$\equiv$$
 NTIME $[n^{O(1)}] \equiv \bigcup_{i=1}^{i=1} \text{NTIME}[n^i]$

PSPACE \equiv **DSPACE** $[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} DSPACE[n^i]$

Th: For
$$t(n) \ge n, s(n) \ge \log n$$
,
 $\mathbf{DTIME}[t(n)] \subseteq \mathbf{NTIME}[t(n)] \subseteq \mathbf{DSPACE}[t(n)]$
 $\mathbf{DSPACE}[s(n)] \subseteq \mathbf{DTIME}[2^{O(s(n))}]$

 $\textbf{Cor:} \quad \textbf{L} \ \subseteq \ \textbf{P} \ \subseteq \ \textbf{NP} \ \subseteq \ \textbf{PSPACE}$

Definition 6.1 The *busy beaver function* $\sigma(n)$ is the maximum number of one's that an *n* state TM with alphabet $\Sigma = \{0, 1\}$ can leave on its tape and halt when started on the all 0 tape. (To fit our definitions, note that "0" is now the "blank character".)

Note that $\sigma(n)$ is well defined:

There are only finitely many *n*-state TMs, with $\Sigma = \{0, 1\}$. Some finite subset, F_n , of these eventually halt on input 0.

Some element of F_n prints the max # of 1's = $\sigma(n)$.

	q_1	q_2	q_3
0	$q_2, 1, \rightarrow$	$q_3, 0, \rightarrow$	$q_3, 1, \leftarrow$
1	h, 1, -	$q_2, 1, \rightarrow$	$q_1, 1, \leftarrow$

 $\sigma(3) \geq 6$

q_1	0	0	0	0	0	0	0
q_2	0	1	0	0	0	0	0
q_3	0	1	0	0	0	0	0
q_3	0	1 [0	1	0	0	0
q_3	0	1	1	1	0	0	0
q_1	0	1	1	1	0	0	0
q_2	1	1	1	1	0	0	0
q_2	1	1	1	1	0	0	0
q_2	1	1	1	1	0	0	0
q_2	1	1	1	1	0	0	0
q_3	1	1	1	1	0	0	0
q_3	1	1	1	1	0	1	0
q_3	1	1	1	1	1	1	0
q_1	1	1	1	1	1	1	0
h	1	1 [1	1	1	1	0

How quickly does $\sigma(n)$ grow as n gets large?

Is
$$\sigma(n) \in O(n^2)$$
 ?
 $O(n^3)$?
 $O(2^n)$?
 $O(n!)$?
 $O(2^{2^n})$?
 $O(\exp^*(n))$?

$$O(\exp^*(\exp^*(n)))$$
 ?

$$\exp^*(n) = 2^{2^{\cdot 2}} n$$

States	Max # of 1's	Lower Bound for $\sigma(n)$
3	$\sigma(3)$	6
4	$\sigma(4)$	13
5	$\sigma(5)$	≥ 4098
6	$\sigma(6)$	$> 10^{865}$

See the web pages of Penousal Machado (eden.dei.uc.pt) and Heiner Marxen (www.drb.insel.de/ heiner/BB) for more on this problem and its variants. **Theorem 6.2** Let $f : \mathbf{N} \to \mathbf{N}$ be a total, recursive function.

$$\lim_{n \to \infty} \left(\frac{f(n)}{\sigma(n)} \right) = 0$$

That is, $f(n) = o(\sigma(n))$.

Proof:

$$g(n) \hspace{0.4cm} = \hspace{0.4cm} n \cdot \left(1 + \sum\limits_{i=0}^n f(i)
ight)$$

Note:

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0$$

We will show for all sufficiently large n,

$$\sigma(n) \geq g(n)$$

g(n) is computed by a k-state TM for some k. For any n, define the TM

$$C_n = \underbrace{ \begin{array}{c} \text{print} & n \\ \hline \left[\log n \right] \end{array} } \underbrace{ \begin{array}{c} \text{compute } g \\ \hline k \end{array} } \underbrace{ \begin{array}{c} \text{binary} \\ \text{to unary} \\ \hline 17 \end{array} } \\ \hline \end{array} }_{17}$$

 C_n has $\lceil \log n \rceil + k + 17$ states.

 C_n prints g(n) 1's.

Once *n* is big enough that $n \ge \lceil \log n \rceil + k + 17$,

$$\sigma(n) \geq \sigma(\lceil \log n \rceil + k + 17) \geq g(n)$$

On HW#2, we define a pairing function:

$$P: \mathbf{N} \times \mathbf{N} \xrightarrow[onto]{1:1}{} \mathbf{N}$$

We can use the pairing function to think of a natural number as a pair of natural numbers.

Thus, the input to a Turing machine is a single binary string which may be thought of as a natural number, a pair of natural numbers, a triple of natural numbers, and so forth. (Later we will worry about the complexity of the pairing and string-conversion functions – do you think they are in L)?

Lecture 6

Turing machines can be encoded as **character strings** which can be encoded as **binary strings** which can be encoded as **natural numbers**.

TM_n	1	2	3	4
0	$1, 0, \rightarrow$	$3, \sqcup, \rightarrow$	0, 0, -	0, 0, -
1	$1, 1, \rightarrow$	$4, \sqcup, \rightarrow$	0, 1, -	0, 1, -
	$2, \sqcup, \leftarrow$	$0, \sqcup, -$	$1, 0, \leftarrow$	$1, 1, \leftarrow$
\triangleright	$1, \triangleright, \rightarrow$	$0, \triangleright, -$	$0, \triangleright, -$	$0, \triangleright, -$

ASCII: $1, 0, \rightarrow; 1, 1, \rightarrow; 2, \sqcup, \leftarrow; 1, \triangleright, \rightarrow;; \cdots 0, \triangleright, \{0, 1\}^{\star}: w$ $\mathbf{N}: n$

There is a simple, countable listing of all TM's:

 M_0, M_1, M_2, \cdots

Theorem 6.3 *There is a* Universal Turing Machine U such that,

$$U(\langle n,m
angle) = M_n(m)$$

Proof: Given $\langle n, m \rangle$, compute *n* and *m*. *n* is a binary string encoding the state table of TM M_n . We can simulate M_n on input *m* by keeping track of its state, its tape, and looking at its state table, *n*, at each simulated step.

Let's look at L(U), the set of numbers P(n, m) such that the Turing machine M_n eventually halts on input n. We'll call this language HALT. The existence of U proves that HALT is r.e., and we'll now show it's not recursive. HALT = $\{P(n,m) \mid \text{TM } M_n(m) \text{ eventually halts}\}$

Theorem 6.4 (Unsolvability of the Halting Problem) HALT *is r.e. but not recursive.*

Proof:

HALT = $\{w \mid U(w) \text{ eventually halts}\}$ = $\{w \mid U'(w) = 1\}$

$$U' = U$$
 erase tape print 1

Suppose HALT were recursive. Then $\sigma(n)$ would be a total recursive function: Cycle through all *n*-state TMs, M_i , and if $P(i, 0) \in$ HALT, then count the number of 1's in $M_i(0)$. Return the maximum of these. But $\sigma(n)$ isn't total recursive, so we have a contradiction.

$$W_i = \{n \mid M_i(n) = 1\}$$

The set of all r.e. sets = W_0, W_1, W_2, \cdots

n	0	1	2	3	4	5	6	7	8	• • •	W_n
0	0	0	0	0	0	0	0	0	0	• • •	W_0
1	1	1	1	1	1	1	1	1	1	• • •	W_1
2	1	0	1	0	1	0	1	0	1	• • •	W_2
3	0	1	0	1	0	1	0	1	0	• • •	W_3
4	1	0	0	0	0	0	0	0	0	• • •	W_4
5	0	1	1	0	1	0	0	0	1	•••	W_5
6	1	0	0	1	0	0	1	0	0	• • •	W_6
7	1	1	0	0	0	0	0	0	0	• • •	W_7
8	0	1	0	0	0	0	0	0	0	• • •	W_8
:	:	:	:	:	:	:	:	:	:	• • •	:
					_	_		_	_		
	0	1	1	1	0	0	1	0	0	•••	K
	1	0	0	0	1	1	0	1	1	•••	\overline{K}

$$K = \{n \mid M_n(n) = 1\} \\ = \{n \mid U(P(n,n)) = 1\} \\ = \{n \mid n \in W_n\}$$

Theorem 6.5 \overline{K} is not r.e.

Proof:
$$\overline{K} = \{n \mid n \notin W_n\}$$

Suppose \overline{K} were r.e. Then for some c,

$$\overline{K} = W_c = \{n \mid M_c(n) = 1\}$$

 $c \in K \iff M_c(c) = 1 \iff c \in W_c \iff c \in \overline{K}$

Corollary 6.6 $K \in$ **r.e.** – **Recursive**