
CMPSCI 601: Recall From Last Time Lecture 6

Def: DTIME, NTIME, DSPACE, measured on
Multi-tape Turing Machines.

Th: DTIME
���������
	��

RAM-TIME
�
�������
	��

DTIME
����������������	

L � DSPACE
����������	

P � DTIME
���! #"%$'&(�) *+-, $ DTIME

��� + 	

NP � NTIME
��� #"%$'& 	 �) *+-, $ NTIME

��� + 	

PSPACE � DSPACE
���! ."/$
&0	 �) *+-, $ DSPACE

��� + 	

Th: For
�������21 �43657�����81 �������

,

DTIME
�
�9�����
	 �

NTIME
���������:	 �

DSPACE
�
�9�����
	

DSPACE
�;57�����:	 �

DTIME
�=< #"�>�"@?9&%& 	

Cor: L
�

P
�

NP
�

PSPACE

1

CMPSCI 601: Busy Beaver Function Lecture 6

Definition 6.1 The busy beaver function � �����
is the max-

imum number of one’s that an
�

state TM with alphabet� � ��� 3��	�
can leave on its tape and halt when started on

the all 0 tape. (To fit our definitions, note that “0” is now
the “blank character”.)

Note that � �����
is well defined:

There are only finitely many
�

-state TMs, with
� � ��� 3��	�

.

Some finite subset, � ? , of these eventually halt on input
0.

Some element of � ? prints the max # of 1’s = � �����
.

2

� $ ��� � �
0 ��� 3�� 3�� � � 3 � 3�� � � 3�� 3��
1 � 3�� 3�	 � � 3 � 3�� � $ 3�� 3��

� ��
 �21 �

� $ 0 0 0 0 0 0 0
� � 0 1 0 0 0 0 0
� � 0 1 0 0 0 0 0
� � 0 1 0 1 0 0 0
� � 0 1 1 1 0 0 0
� $ 0 1 1 1 0 0 0
� � 1 1 1 1 0 0 0
� � 1 1 1 1 0 0 0
� � 1 1 1 1 0 0 0
� � 1 1 1 1 0 0 0
� � 1 1 1 1 0 0 0
� � 1 1 1 1 0 1 0
� � 1 1 1 1 1 1 0
� $ 1 1 1 1 1 1 0

� 1 1 1 1 1 1 0

3

How quickly does � �����
grow as

�
gets large?

Is � ������� � ��� � � �

� ����� � �

� � < ? � �

� ����� � �

� � < ��� � �

� �	��

��� ������� �

� ����
�� � ����
�� � ��������� �

��
�� � ����� � <
����� � � ��� ��������

?

4

CMPSCI 601: Some Values of � �����
Lecture 6

States Max # of 1’s Lower Bound for � �����
3 � �
 � �
4 � ��� � ��

5 � ��� � 1 � �����
6 � � � � � � �	��

�
See the web pages of Penousal Machado

(eden.dei.uc.pt) and Heiner Marxen
(www.drb.insel.de/ heiner/BB) for more on

this problem and its variants.

5

Theorem 6.2 Let � � N
�

N be a total, recursive func-
tion.

�����?��
)

�		
 �
�����

� �����
�
��� � �

That is, � ����� � � � � �������
.

Proof:

� ����� � � � �	
 ��� ?�+-,�� � ��� � �
��
Note: �����?��

)

�		
 �
�����

� �����
�
��� � �

We will show for all sufficiently large
�

,

� ����� 1 � �����

6

� �����
is computed by a � -state TM for some � .

For any
�

, define the TM

� ? �
print

�
� ��� ��	��

� ?��

compute �
� ��� ��

binary
to unary� ��� �$��

� ? has � ��������� � � � ���
states.� ? prints � �����

1’s.

Once
�

is big enough that
� 1 � ����� ��� � � � ���

,

� ����� 1 � � � ����� ��� � � � ��� � 1 � �����

7

CMPSCI 601: A Pairing Function Lecture 6

On HW#2, we define a pairing function:

� � N � N
������
� ��� �

N

� �
	 ��� � 3�
 ��� ��� � �

	 � � ��� 3�� ��� � �

 � � ��� 3�� ��� � �

We can use the pairing function to think of a natural num-
ber as a pair of natural numbers.

Thus, the input to a Turing machine is a single binary
string which may be thought of as a natural number, a
pair of natural numbers, a triple of natural numbers, and
so forth. (Later we will worry about the complexity of the
pairing and string-conversion functions – do you think
they are in L)?

8

CMPSCI 601: Numbering Turing Machines Lecture 6

Turing machines can be encoded as character strings
which can be encoded as binary strings which can be
encoded as natural numbers.

TM ? � <
 �

0
� 3 � 3��
 3�� 3�� � 3 � 3 	 � 3 � 3�	

1
� 3�� 3�� � 3�� 3�� � 3�� 3 	 � 3�� 3�	

� < 3�� 3�� � 3�� 3 	 � 3 � 3�� � 3�� 3��
� � 3 � 3�� � 3 � 3�	 � 3 � 3�	 � 3 � 3�	

ASCII:
� 3 � 3�� � � 3�� 3�� � < 3�� 3�� � � 3 � 3�� ��� � � � � 3 � 3�	

��� 3��	��� � �

N � �

There is a simple, countable listing of all TM’s:
	 � 3 	 $ 3 	 � 3 � � �

9

CMPSCI 601: The Universal Turing Machine Lecture 6

Theorem 6.3 There is a Universal Turing Machine � such
that,

� ��� �43�� � � � 	 ? ��� �

Proof: Given
� �43�� �

, compute
�

and
�

.
�

is a binary
string encoding the state table of TM

	 ? . We can simu-
late

	 ? on input
�

by keeping track of its state, its tape,
and looking at its state table,

�
, at each simulated step.

Let’s look at
	 � � �

, the set of numbers
� ���43�� �

such that
the Turing machine

	 ? eventually halts on input
�

. We’ll
call this language HALT. The existence of � proves that
HALT is r.e., and we’ll now show it’s not recursive.

10

HALT
� � � ���43�� � �

TM
	 ? ��� �

eventually halts
�

Theorem 6.4 (Unsolvability of the Halting Problem)
HALT is r.e. but not recursive.

Proof:

HALT
� � � � � ��� �

eventually halts
�

� � � � � �
��� � � �	�

� �
� � erase tape print 1

Suppose HALT were recursive. Then � �����
would be a

total recursive function: Cycle through all
�

-state TMs,
	 + , and if

� ��� 3 � � �
HALT, then count the number of 1’s

in
	 + � � � . Return the maximum of these. But � �����

isn’t
total recursive, so we have a contradiction.

11

CMPSCI 601: Listing All r.e. Sets Lecture 6

� + � � � � 	 + ����� � �	�

The set of all r.e. sets =
� � 3 � $ 3 � � 3 � � �

� � � <
 � � � � � � � � � ?�
0

� � � � � � � � � � � � �� �
1

� � � � � � � � � � � $< � �
1

� � � � � � � � � � �
 � � �
1

� � � � � � � � � �
� � � � �

0
� � � � � � � � �

� � � � � �
0

� � � � � � �
�� � � � � � �

1
� � � � � �

� � � � � � � �
0

� � � � � �
� � � � � � � � �

0
� � � �

�
...

� � � ...

� � � � � � � � � � � � �
� � � � � � � � � � � � �

12

CMPSCI 601: Diagonalization and Halting Lecture 6

� � � � � 	 ? ����� � �	�
� � � � � � � ���43 ����� � �	�
� � � � � � � ? �

Theorem 6.5
�

is not r.e.

Proof:
� � � � � � �� � ? �

Suppose
�

were r.e. Then for some � ,

� � � � � � � � 	 � ����� � �	�

�
� � � 	 � � �

� � � �
�
� � � �

�
� �

Corollary 6.6
� �

r.e.
	

Recursive

13

