CMPSCI 601: Recall From Last Time Lecture 6

Def: DTIME, NTIME, DSPACE, measured on
Multi-tape Turing Machines.

Th: DTIME[t(n)] € RAM-TIME[t(n)] C DTIME[(t(n))?]

L = DSPACE]logn|

P = DTIME[ROV] = ElDTlME[ni]

NP = NTIME[RCY] = ElNTIME[ni]
PSPACE = DSPACE[rOW] = ;ﬁlDSPACE[nz‘]

Th: Fort(n) > n,s(n) > logn,
DTIME[t(n)] € NTIME[t(n)] C DSPACE[t(n)]

DSPACE[s(n)] C DTIME[296()]

Cor: L C P C NP C PSPACE



CMPSCI 601 Busy Beaver Function Lecture 6

Definition 6.1 The busy beaver function o(n) is the max-
Imum number of one’s that an n state TM with alphabet
> = {0, 1} can leave on its tape and halt when started on
the all O tape. (To fit our definitions, note that “0” Is now
the “blank character”.) [

Note that o(n) is well defined:
There are only finitely many n-state TMs, with > = {0, 1}.

Some finite subset, F},, of these eventually halt on input
0.

Some element of F;, prints the max # of 1’'s = o(n).
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How quickly does o(n) grow as n gets large?

Iso(n) € O(n?) ?
O(n?) ?

O(2") ?

O(n!) ?

O(2%) ?

O(exp*(n)) 7
O(exp*(exp*(n))) ?



CMPSCI 601: Some Values of o(n) Lecture 6
States | Max # of 1’s | Lower Bound for o(n)
3 a(3) 6
4 o(4) 13
5 o(5) > 4098
6 o(6) > 10865

See the web pages of Penousal Machado
(eden. dei . uc. pt ) and Heiner Marxen
(Ww. dr b. i nsel . de/ hei ner/ BB) for more on

this problem and its variants.




Theorem 6.2 Let f : N — N be a total, recursive func-

tion.
i (£2) =

n—aoo

Thatis, f(n) = o(o(n)).

Proof:

Note:
iy (2] = o

n—00 g(n)

We will show for all sufficiently large n,

on) = g(n)



g(n) is computed by a k-state TM for some k.
For any n, define the TM

C, = print n |jcompute g tgll'}r@r/y
[loén] k 17

C, has [logn| + k + 17 states.
C', prints g(n) 1’s.
Once n is big enough that n > [logn| + k + 17,

og(n) > o([logn]+k+17) > g(n)



CMPSCI 601: A Pairing Function Lecture 6

On HW#2, we define a pairing function:

P:NxN_ N

onto

We can use the pairing function to think of a natural num-
ber as a pair of natural numbers.

Thus, the input to a Turing machine is a single binary
string which may be thought of as a natural number, a
pair of natural numbers, a triple of natural numbers, and
so forth. (Later we will worry about the complexity of the
pairing and string-conversion functions — do you think
they are in L)?




CMPSCI 601 Numbering Turing Machines

Lecture 6

Turing machines can be encoded as character strings
which can be encoded as binary strings which can be
encoded as natural numbers.

™, 1 2 3 4
0O [1,0,—3,L,—10,0,—1{0,0,—
1 |1,1,—|4,U4,—]0,1,— (0,1, —
L2, 0,L,— 1,0, 1,1, «
> | L,>,— | 0,>,— | 0,>,— | 0,>, —
ASCIIl: 1,0, —;1,1, —; 2, L, <= 1,0, —:;; - -+ 0,>, —
{0,1}*: w
N: n

There is a simple, countable listing of all TM’s:

My, My, My, - - -



cvpscieor: I he Universal Turing Machine Lecture 6

Theorem 6.3 Thereisa Universal Turing Machine U such
that,

U((n,m)) = My(m)

Proof: Given (n,m), compute n and m. n is a binary
string encoding the state table of TM M,,. We can simu-
late M, on input m by keeping track of its state, its tape,
and looking at its state table, n, at each simulated step. &

Let’s look at L(U), the set of numbers P(n, m) such that
the Turing machine M,, eventually halts on input n. We’ll
call this language HALT. The existence of U proves that
HALT is r.e., and we’ll now show it’s not recursive.
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HALT = {P(n,m) | TM M,(m) eventually halts}

Theorem 6.4 (Unsolvability of the Halting Problem)
HALT isr.e. but not recursive.
Proof:
HALT = {w | U(w) eventually halts}
= {w | U(w) =1}

U = U |erase tape|print 1

Suppose HALT were recursive. Then o(n) would be a
total recursive function: Cycle through all n-state TMs,
M;, and if P(i,0) € HALT, then count the number of 1’s
in M;(0). Return the maximum of these. But o(n) isn't
total recursive, so we have a contradiction.

)
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Listing All r.e. Sets Lecture 6

CMPSCI 601:

The set of all r.e. sets = Wy, Wy, Wy, - -
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CMPSCI 601 Diagonalization and Halting Lecture 6

K ={n | M,(n)=1}
= {n | U(P(n,n)) =1}
={n | neW,}

Theorem 6.5 Kisnotr.e

Proof: K = {n|ngW,}
Suppose K were r.e. Then for some ¢,

K = W, = {n|M(n=1

ceK & MJ(c)=1 & ceW, & ceK

Corollary 6.6 K € r.e. — Recursive

13



