CMPSCI 601: \quad Recall From Last Time \quad Lecture 6

Def: DTIME, NTIME, DSPACE, measured on Multi-tape Turing Machines.

Th: DTIME $[t(n)] \subseteq \operatorname{RAM}-\operatorname{TIME}[t(n)] \subseteq \mathbf{D T I M E}\left[(t(n))^{3}\right]$

$$
\begin{array}{cl}
\mathbf{L} & \equiv \mathbf{D S P A C E}[\log n] \\
\mathbf{P} & \equiv \mathbf{D T I M E}\left[n^{O(1)}\right] \equiv \bigcup_{i=1}^{\infty} \mathbf{D T I M E}\left[n^{i}\right] \\
\mathbf{N P} & \equiv \mathbf{N T I M E}\left[n^{O(1)}\right] \equiv \bigcup_{i=1}^{\infty} \mathbf{N T I M E}\left[n^{i}\right] \\
\text { PSPACE } & \equiv \mathbf{D S P A C E}\left[n^{O(1)}\right] \equiv \bigcup_{i=1}^{\infty} \text { DSPACE }\left[n^{i}\right]
\end{array}
$$

Th: For $t(n) \geq n, s(n) \geq \log n$,
$\operatorname{DTIME}[t(n)] \subseteq \mathbf{N T I M E}[t(n)] \subseteq \operatorname{DSPACE}[t(n)]$
$\operatorname{DSPACE}[s(n)] \subseteq \quad$ DTIME $\left[2^{O(s(n))}\right]$

Cor: $\quad \mathbf{L} \subseteq \mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E}$

CMPSCI 601:	Busy Beaver Function	Lecture 6

Definition 6.1 The busy beaver function $\sigma(n)$ is the maximum number of one's that an n state TM with alphabet $\Sigma=\{0,1\}$ can leave on its tape and halt when started on the all 0 tape. (To fit our definitions, note that " 0 " is now the "blank character".)

Note that $\sigma(n)$ is well defined:
There are only finitely many n-state TMs, with $\Sigma=\{0,1\}$.
Some finite subset, F_{n}, of these eventually halt on input 0 .

Some element of F_{n} prints the max \# of 1's $=\sigma(n)$.

	q_{1}	q_{2}	q_{3}
0	$q_{2}, 1, \rightarrow$	$q_{3}, 0, \rightarrow$	$q_{3}, 1, \leftarrow$
1	$h, 1,-$	$q_{2}, 1, \rightarrow$	$q_{1}, 1, \leftarrow$

How quickly does $\sigma(n)$ grow as n gets large?

$$
\text { Is } \sigma(n) \in \begin{array}{cc}
O\left(n^{2}\right) & ? \\
O\left(n^{3}\right) & ? \\
O\left(2^{n}\right) & ? \\
O(n!) & ? \\
O\left(2^{2^{n}}\right) & ? \\
O\left(\exp ^{*}(n)\right) & ? \\
O\left(\exp ^{*}\left(\exp ^{*}(n)\right)\right) & ?
\end{array}
$$

$$
\left.\exp ^{*}(n)=2^{2^{2 \cdot \cdot^{2}}}\right\} n
$$

CMPSCI 601:	Some Values of $\sigma(n)$	Lecture 6

States	Max \# of 1's	Lower Bound for $\sigma(n)$
3	$\sigma(3)$	6
4	$\sigma(4)$	13
5	$\sigma(5)$	≥ 4098
6	$\sigma(6)$	$>10^{865}$

See the web pages of Penousal Machado
(eden.dei.uc.pt) and Heiner Marxen
(www.drb.insel.de/ heiner/BB) for more on this problem and its variants.

Theorem 6.2 Let $f: \mathbf{N} \rightarrow \mathbf{N}$ be a total, recursive function.

$$
\lim _{n \rightarrow \infty}\left(\frac{f(n)}{\sigma(n)}\right)=0
$$

That is, $f(n)=o(\sigma(n))$.

Proof:

$$
g(n)=n \cdot\left(1+\sum_{i=0}^{n} f(i)\right)
$$

Note:

$$
\lim _{n \rightarrow \infty}\left(\frac{f(n)}{g(n)}\right)=0
$$

We will show for all sufficiently large n,

$$
\sigma(n) \geq g(n)
$$

$g(n)$ is computed by a k-state TM for some k.
For any n, define the TM

C_{n} has $\lceil\log n\rceil+k+17$ states.
C_{n} prints $g(n)$ 1's.
Once n is big enough that $n \geq\lceil\log n\rceil+k+17$,

$$
\sigma(n) \geq \sigma(\lceil\log n\rceil+k+17) \geq g(n)
$$

On HW\#2, we define a pairing function:

$$
P: \mathbf{N} \times \mathbf{N}_{\substack{\rightarrow \\ \text { onto }}}^{1: 1} \mathbf{N}
$$

$$
\begin{aligned}
P(L(w), R(w)) & =w \\
L(P(i, j)) & =i \\
R(P(i, j)) & =j
\end{aligned}
$$

We can use the pairing function to think of a natural number as a pair of natural numbers.

Thus, the input to a Turing machine is a single binary string which may be thought of as a natural number, a pair of natural numbers, a triple of natural numbers, and so forth. (Later we will worry about the complexity of the pairing and string-conversion functions - do you think they are in \mathbf{L})?

Turing machines can be encoded as character strings which can be encoded as binary strings which can be encoded as natural numbers.

TM_{n}	1	2	3	4
0	$1,0, \rightarrow$	$3, \sqcup, \rightarrow$	$0,0,-$	$0,0,-$
1	$1,1, \rightarrow$	$4, \sqcup, \rightarrow$	$0,1,-$	$0,1,-$
\sqcup	$2, \sqcup, \leftarrow$	$0, \sqcup,-$	$1,0, \leftarrow$	$1,1, \leftarrow$
\triangleright	$1, \triangleright, \rightarrow$	$0, \triangleright,-$	$0, \triangleright,-$	$0, \triangleright,-$

ASCII: $\quad 1,0, \rightarrow ; 1,1, \rightarrow ; 2, \sqcup, \leftarrow ; 1, \triangleright, \rightarrow ; ; \cdots 0, \triangleright,-$ $\{0,1\}^{\star}: \quad w$
$\mathbf{N}: n$

There is a simple, countable listing of all TM's:

$$
M_{0}, M_{1}, M_{2}, \cdots
$$

Theorem 6.3 There is a Universal Turing Machine U such that,

$$
U(\langle n, m\rangle)=M_{n}(m)
$$

Proof: Given $\langle n, m\rangle$, compute n and m. n is a binary string encoding the state table of TM M_{n}. We can simulate M_{n} on input m by keeping track of its state, its tape, and looking at its state table, n, at each simulated step.

Let's look at $L(U)$, the set of numbers $P(n, m)$ such that the Turing machine M_{n} eventually halts on input n. We'll call this language HALT. The existence of U proves that HALT is r.e., and we'll now show it's not recursive.

HALT $=\left\{P(n, m) \mid \mathrm{TM} M_{n}(m)\right.$ eventually halts $\}$
Theorem 6.4 (Unsolvability of the Halting Problem) HALT is r.e. but not recursive.

Proof:

$$
\begin{aligned}
\text { HALT } & =\{w \mid U(w) \text { eventually halts }\} \\
& =\left\{w \mid U^{\prime}(w)=1\right\} \\
U^{\prime} & =\begin{array}{|c|c|c|}
\hline U & \text { erase tape } & \text { print } 1 \\
\hline
\end{array}
\end{aligned}
$$

Suppose HALT were recursive. Then $\sigma(n)$ would be a total recursive function: Cycle through all n-state TMs, M_{i}, and if $P(i, 0) \in$ HALT, then count the number of 1 's in $M_{i}(0)$. Return the maximum of these. But $\sigma(n)$ isn' t total recursive, so we have a contradiction.

$$
\begin{array}{ll}
\hline \text { CMPSCI 601: } & \text { Listing All r.e. Sets } \\
& W_{i}=\left\{n \mid M_{i}(n)=1\right\}
\end{array}
$$

The set of all r.e. sets $=W_{0}, W_{1}, W_{2}, \cdots$

n	0	1	2	3	4	5	6	7	8	\cdots	W_{n}
0	0	0	0	0	0	0	0	0	0	\cdots	W_{0}
1	1	1	1	1	1	1	1	1	1	\cdots	W_{1}
2	1	0	1	0	1	0	1	0	1	\cdots	W_{2}
3	0	1	0	1	0	1	0	1	0	\cdots	W_{3}
4	1	0	0	0	0	0	0	0	0	\cdots	W_{4}
5	0	1	1	0	1	0	0	0	1	\cdots	W_{5}
6	1	0	0	1	0	0	1	0	0	\cdots	W_{6}
7	1	1	0	0	0	0	0	0	0	\cdots	W_{7}
8	0	1	0	0	0	0	0	0	0	\cdots	W_{8}
\vdots	\cdots	\vdots									
	0	1	1	1	0	0	1	0	0	\cdots	K
	1	0	0	0	1	1	0	1	1	\cdots	\bar{K}

$$
\begin{aligned}
K & =\left\{n \mid M_{n}(n)=1\right\} \\
& =\{n \mid U(P(n, n))=1\} \\
& =\left\{n \mid n \in W_{n}\right\}
\end{aligned}
$$

Theorem 6.5 \bar{K} is not r.e.

Proof: $\quad \bar{K}=\left\{n \mid n \notin W_{n}\right\}$
Suppose \bar{K} were r.e. Then for some c,

$$
\begin{gathered}
\bar{K}=W_{c}=\left\{n \mid M_{c}(n)=1\right\} \\
c \in K \Leftrightarrow M_{c}(c)=1 \Leftrightarrow c \in W_{c} \Leftrightarrow c \in \bar{K}
\end{gathered}
$$

Corollary 6.6 $K \in$ r.e. - Recursive

