CMPSCI 601: Recall From Last Time Lecture 5

Turing Machines: M = (Q,X%,9,s)

0: Q@ xX = (QU{h}H x I X {+,—,—}

Def: Function f is recursive iff it is computed by a TM.
f may be total or partial.

Def: A set S is recursive iff its characteristic function
X s IS a recursive function.

Recursive Is the set of recursive sets.

A set S is recursively enumberable (r.e.) iff its partial
characteristic function pg 1s a recursive function.

r.e. is the set of r.e. sets.

Th: Recursive =r.e. N co-r.e.




CMPSCI 601: Palindromes Lecture 5

Definition 5.1 A string w € >* is a palindrome iff it is
the same as its reversal, i.e., w = w. [

Examples of palindromes:

e 101

e 1101001011

e ABLE WAS | ERE | SAW ELBA

e AMANAPLANACANALPANAMA

Fact 5.2 The set of PALINDROMES (over a fixed alpha-
bet, X Is context-free but not regular.



Proposition 5.3 The set of PALINDROMES (over a fixed
alphabet, X) is a recursive set.

Proof:

>lA/B/LIEEILIBAU

)

Fact 5.4 Time O(n?) is necessary and sufficient for a one-
tape Turing machine to accept the set, PALINDROMES.

Proof: Time O(n?) suffices. One way to see this is to do
problems 2.8.4, 2.8.5 from [P]. [



CMPSCI 601 MuliTape Turing Machines Lecture 5

Definition 5.5 A k-tape Turing machine, M = (Q, ¥, 9, s)

(). finite set of states; s € ()
2. finite set of symbols;
5:Q x ¢ = (QU{A}) x (T x {+,—,—})"

Proposition 5.6 PALINDROMES can be accepted in
DTIME|n]| on a 2-tape TM.



Proof: (that PALINDROMES € DTIME[n))
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CMPSCI 601 DTIME and DSPACE Lecture 5

Definition 5.7 Aset A C ¥*isin DTIME][t(n)] iff there

exists a deterministic, multi-tape TM, M, and a constant
¢, such that,

1.A = LM = {weX | Mw)=1}
and

2. Yw € ¥*, M(w) halts within ¢(1 + #(|w|)) steps.




Definition 5.8 A set A C >* is in DSPACE|s(n)| iff
there exists a deterministic, multi-tape TM, M, and a
constant ¢, such that,

1.A = L(M), and

2. Yw € ¥, M(w) uses at most ¢(1 + s(|w|)) work-tape
cells.

(Note: The input tape is read-only and not counted as
space used. Otherwise space bounds below n would
rarely be useful. But in the real world we often want
to limit space and work with read-only input. [

Example: PALINDROMES € DTIME|n]|, DSPACE|n).
In fact, PALINDROMES € DSPACE/|log n|.



CMPSCI 601 F(DTIME) and F(DSPACE) Lecture 5

Definition 59 f : ¥* — Y*is in F(DTIME[t(n)])
Iff there exists a deterministic, multi-tape TM, M, and
a constant ¢, such that,

Lf = MC()
2. Yw € ¥*, M(w) halts within ¢(1 + t(|w|)) steps;
3. [f(w)] < |w|°W, ie., fis polynomially bounded.

)

Definition 5.10 f : ¥* — ¥*is in F(DSPACE[s(n)])
Iff there exists a deterministic, multi-tape TM, M, and a
constant ¢, such that,

Lf = MC()

2. Yw € ¥*, M(w) uses at most ¢(1 + s(|w|)) work-tape
cells;

3. [f(w)] < |w]|°W), i.e., fis polynomially bounded.
(Input tape is “read-only”; Output tape is “write-only”.
Neither is counted as space used.) [

Example: Plus e F(DTIME[n]), Times € F(DTIME[n?])
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CMPSCI 601:

L, P, and PSPACE Lecture 5

L

PSPACE

DSPACE|log n]
DTIME[nCW)]

DSPACE[n°W)]

4

U DTIME[n]

1=1

i@lDSPACE[ni]




Theorem 5.11 For any functions ¢(n) > n, s(n) > logn,
we have

DTIME[t(n)] C DSPACE[t(n)]
DSPACE[s(n)] C DTIME[C¢()

Proof: Let M be a DSPACE([s(n)| TM,
let w € ¥*, letn = |w)|

M (w) has k tapes and uses at most cs(n) work-tape cells.
M (w) has at most,

Q|- (n+ cs(n) +2)F - |5 < ks
possible configurations.
Thus, after 2¥'5(") steps, M (w) must be in an infinite loop.

A

Corollary 5.12 L C P C PSPACE
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CMPSCI 601: PALINDROMES € L Lecture 5

>|A|BILIEIEILIB/AU| [>]]1]U

Using O(log n) workspace, we can keep track of and ma-
nipulate two pointers into the input.
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CMPSCI 601 DTIME versus RAMTIME Lecture 5

RAM = Random Access Machine

Memory: |k |ry|r1|To|T3| T4 r;

K = program counter; 7y = accumulator

Instruction | Operand Semantics

READ  [j[ 141 =4[ro=(rj[r,[J)
STORE gl T (rj | 7p) =9

ADD il T3l =3 TO::T0+(Tj|TT’j|j)
SUB jl 13l =jglro:=ro—(rj|r |J)
HALF ro = |10/2]

JUMP J K=

JPOS ] If (ro > 0) thenx :=j
JZERO ] If (ro=0) then x :=j
HALT k=0
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Theorem 5.13
DTIME(t(n)] € RAM-TIME[t(n)] C DTIME[(t(n))3]

Proof: Memorize program in finite control.
Store all registers on one tape:

>~1/1/,/0/:/2/0/1},/1/0/1}:/0|,/1/0/2}1|:/1]0

K To s 11

Store workspace for calculations on second tape:

>11/0(0(,/12/0/1|1 L
K A

Use the third tape for moving over sections of the first
tape.

>(0(:/1/0{1},/1{0|1}:/0/,;2/0/2/1}:/1 0L

0o rs 11

Each register contains at most n + ¢(n) bits.
The total number of tape cells used is at most

2t(n)(n +t(n)) = O((t(n))")

Each step takes at most O((¢(n))?) steps to simulate.  é
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CMPSCI 601: Nondeterministic TM Lecture 5

Nondeterministic Turing Machines choose one of two
possible moves each step.

guess.tm S g q
0
1
L] g, —|q,LU,—|s,0,— |s,1,—
> S, >, —
comment gorgqg guessOorl |the rest

e Write down an arbitrary string g € {0, 1}*, the guess.

e Proceed with the rest of the computation, using g if
desired.

e Accept Iff there exists some guess that leads to accep-
tance.
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guess.tm S g q
0
1
L gal—la_|QJ|—|7_ 3707_> |S717_>
> S, >, —
comment gorgqg guessOorl1 |the rest
s |>]u
s |>|U
g |>| U
s (>0 [U
g |>|0|L
s [(>(0[1]/L
g [>/0]1]L
s (>|0/1]1
g >(0/1/1/[L
s [>]0/1/11]0 1L
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Definition 5.14 The set accepted byaNTM, N : L(N) =

{w € ¥* | some run of N(w) halts with output “1”}

The time taken by NV onw € L(N) is the number of steps
in the shortest computation of N (w) that accepts. &

t(n)
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CMPSCI 601: NTIME and NP Lecture 5

NTIME[t(n)] = probs. accepted by NTMs in time O(t(n))

NP

NTIME[RCW] = Cf_JOlNTIME[ni]

7

Theorem 5.15 For any function ¢(n),
DTIME[t(n)] € NTIME[t(n)] C DSPACE[t(n)]

Recall:  DSPACE[t(n)] C DTIME[29U(")

Corollary 5.16
L C P C NP C PSPACE

Corollary 5.17 The definition of Recursive and r.e. are
unchanged if we use nondeterministic instead of deter-
ministic Turing machines.
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