Recall From Last Time

Lecture 5

Turing Machines: $M = (Q, \Sigma, \delta, s)$

$$\delta: Q \times \Sigma \to (Q \cup \{h\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$$

Def: Function f is *recursive* iff it is computed by a TM. f may be total or partial.

Def: A set S is *recursive* iff its characteristic function χ_S is a recursive function.

Recursive is the set of recursive sets.

A set S is recursively enumberable (r.e.) iff its partial characteristic function p_S is a recursive function.

r.e. is the set of r.e. sets.

Th: Recursive = r.e. \cap co-r.e.

Definition 5.1 A string $w \in \Sigma^*$ is a *palindrome* iff it is the same as its reversal, i.e., $w = w^R$.

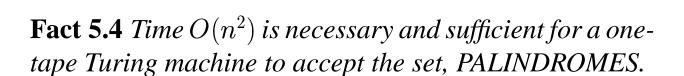
Examples of palindromes:

- 101
- 1101001011
- ABLE WAS I ERE I SAW ELBA
- AMANAPLANACANALPANAMA

Fact 5.2 The set of PALINDROMES (over a fixed alphabet, Σ is context-free but not regular.

Proposition 5.3 The set of PALINDROMES (over a fixed alphabet, Σ) is a recursive set.

Proof:



Proof: Time $O(n^2)$ suffices. One way to see this is to do problems 2.8.4, 2.8.5 from [P].

Definition 5.5 A k-tape Turing machine, $M=(Q,\Sigma,\delta,s)$

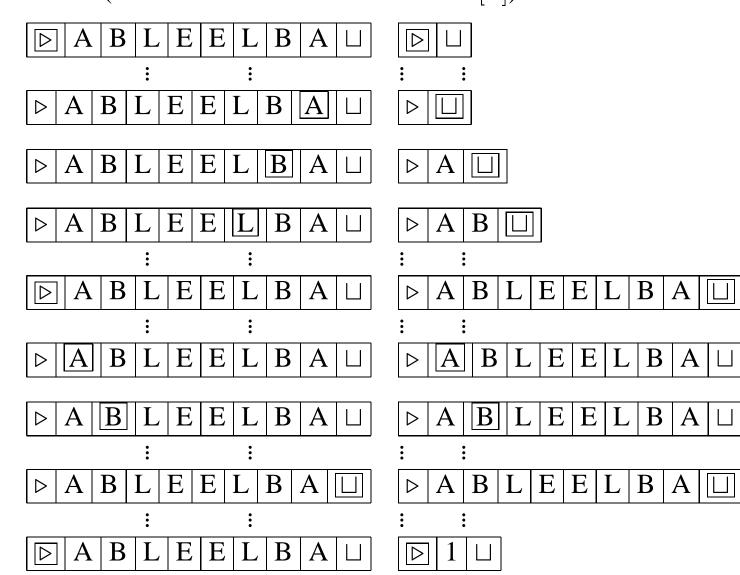
Q: finite set of states; $s \in Q$

 Σ : finite set of symbols;

$$\delta: Q \times \Sigma^k \to (Q \cup \{h\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$$

Proposition 5.6 *PALINDROMES can be accepted in* $\mathbf{DTIME}[n]$ *on a 2-tape TM*.

Proof: (that PALINDROMES \in **DTIME**[n])



DTIME and DSPACE

Lecture 5

Definition 5.7 A set $A \subseteq \Sigma^*$ is in **DTIME**[t(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that,

- $\begin{array}{rcl} 1. \ A & = & \mathcal{L}(M) & \equiv & \{w \in \Sigma^{\star} \mid M(w) = 1\}, \\ \text{and} & & \end{array}$
- 2. $\forall w \in \Sigma^*, M(w)$ halts within c(1 + t(|w|)) steps.

Definition 5.8 A set $A \subseteq \Sigma^*$ is in **DSPACE**[s(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that,

- 1. $A = \mathcal{L}(M)$, and
- 2. $\forall w \in \Sigma^*$, M(w) uses at most c(1+s(|w|)) work-tape cells.

(Note: The input tape is **read-only** and **not counted as space used**. Otherwise space bounds below n would rarely be useful. But in the real world we often want to limit space and work with read-only input.

Example: PALINDROMES \in **DTIME**[n], **DSPACE**[n]. In fact, PALINDROMES \in **DSPACE** $[\log n]$.

Definition 5.9 $f: \Sigma^* \to \Sigma^*$ is in $F(\mathbf{DTIME}[t(n)])$ iff there exists a deterministic, multi-tape TM, M, and a constant c, such that,

- 1. $f = M(\cdot);$
- 2. $\forall w \in \Sigma^*, M(w)$ halts within c(1 + t(|w|)) steps;
- 3. $|f(w)| \leq |w|^{O(1)}$, i.e., f is polynomially bounded.

Definition 5.10 $f: \Sigma^* \to \Sigma^*$ is in $F(\mathbf{DSPACE}[s(n)])$ iff there exists a deterministic, multi-tape TM, M, and a constant c, such that,

- $1. f = M(\cdot);$
- 2. $\forall w \in \Sigma^{\star}$, M(w) uses at most c(1+s(|w|)) work-tape cells;
- 3. $|f(w)| \leq |w|^{O(1)}$, i.e., f is polynomially bounded.

(Input tape is "read-only"; Output tape is "write-only". Neither is counted as space used.)

Example: Plus $\in F(\mathbf{DTIME}[n])$, Times $\in F(\mathbf{DTIME}[n^2])$

L, P, and PSPACE

Lecture 5

$$L \equiv \mathbf{DSPACE}[\log n]$$

$$\mathbf{P} \equiv \mathbf{DTIME}[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} \mathbf{DTIME}[n^i]$$

$$\mathbf{PSPACE} \ \equiv \ \mathbf{DSPACE}[n^{O(1)}] \ \equiv \ \mathop{\cup}\limits_{i=1}^{\infty} \mathbf{DSPACE}[n^i]$$

Theorem 5.11 For any functions $t(n) \ge n$, $s(n) \ge \log n$, we have

$$\begin{array}{ccc} \mathbf{DTIME}[t(n)] & \subseteq & \mathbf{DSPACE}[t(n)] \\ \mathbf{DSPACE}[s(n)] & \subseteq & \mathbf{DTIME}[2^{O(s(n))}] \end{array}$$

Proof: Let M be a **DSPACE**[s(n)] TM,

let
$$w \in \Sigma^{\star}$$
, let $n = |w|$

M(w) has k tapes and uses at most cs(n) work-tape cells. M(w) has at most,

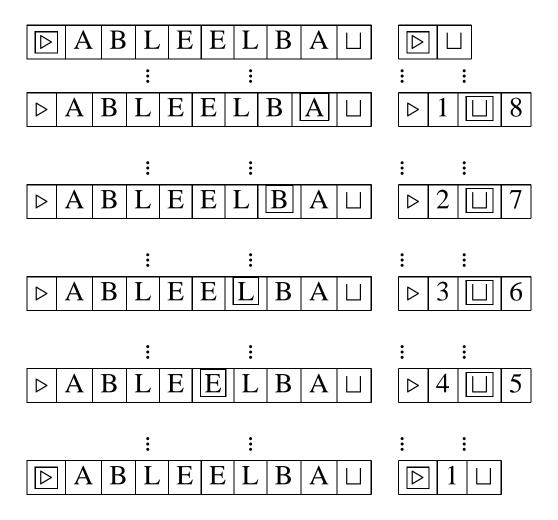
$$|Q| \cdot (n + cs(n) + 2)^k \cdot |\Sigma|^{cs(n)} < 2^{k's(n)}$$

possible configurations.

Thus, after $2^{k's(n)}$ steps, M(w) must be in an infinite loop.

Corollary 5.12
$$L \subseteq P \subseteq PSPACE$$

CMPSCI 601: PALINDROMES \in L Lecture 5



Using $O(\log n)$ workspace, we can keep track of and manipulate two pointers into the input.

DTIME versus RAMTIME

Lecture 5

RAM = Random Access Machine

Memory: $|\kappa| r_0 |r_1| r_2 |r_3| r_4 | \cdots |r_i| \cdots$

 $\kappa = \text{program counter}; \quad r_0 = \text{accumulator}$

Instruction	Operand	Semantics
READ	$ j \uparrow j = j$	$r_0 := (r_j \mid r_{r_j} \mid j)$
STORE	$\mid j \mid \ \uparrow j$	$ig (r_j\mid r_{r_j}):=r_0$
ADD	$ j \uparrow j = j$	$ig r_0 := r_0 + (r_j \mid r_{r_j} \mid j) ig $
SUB	$ j \uparrow j = j$	$r_0 := r_0 - (r_j \mid r_{r_j} \mid j)$
HALF		$r_0 := \lfloor r_0/2 \rfloor$
JUMP	j	$\kappa := j$
JPOS	j	if $(r_0 > 0)$ then $\kappa := j$
JZERO	j	if $(r_0=0)$ then $\kappa:=j$
HALT		$\kappa := 0$

Theorem 5.13

$$\mathbf{DTIME}[t(n)] \subseteq \mathsf{RAM-TIME}[t(n)] \subseteq \mathbf{DTIME}[(t(n))^3]$$

Proof: Memorize program in finite control.

Store all registers on one tape:

$$ho | 1 | 1 |, 0 | : | 1 | 0 | 1 |, | 1 | 0 | 1 | : | 0 |, | 1 | 0 | 1 | 1 | : | 1 | 0 | \sqcup \kappa$$
 r_0 r_5 r_{11}

Store workspace for calculations on second tape:

Use the third tape for moving over sections of the first tape.

$$oxed{
ho\ 0\ :\ 1\ 0\ 1\ ,\ 1\ 0\ 1\ :\ 0\ ,\ 1\ 0\ 1\ 1\ :\ 1\ 0\ \sqcup} r_{11}$$

Each register contains at most n + t(n) bits.

The total number of tape cells used is at most

$$2t(n)(n + t(n)) = O((t(n))^2)$$

Each step takes at most $O((t(n))^2)$ steps to simulate. \spadesuit

Nondeterministic TM

Lecture 5

Nondeterministic Turing Machines choose one of two possible moves each step.

guess.tm	s	g	q
0			
1			
	$g,\sqcup,-\mid q,\sqcup,-$	$s, 0, \rightarrow s, 1, \rightarrow \rangle$	
\triangleright	$s, \triangleright, \rightarrow$		
comment	g or q	guess 0 or 1	the rest

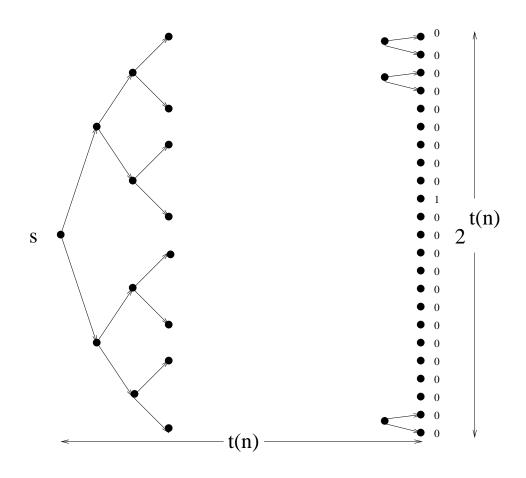
- Write down an arbitrary string $g \in \{0, 1\}^*$, the guess.
- ullet Proceed with the rest of the computation, using g if desired.
- Accept iff there exists some guess that leads to acceptance.

guess.tm	s	g	q
0			
1			
	$\boxed{g,\sqcup,-\mid q,\sqcup,-}$	$s,0, \rightarrow \mid s,1, \rightarrow$	
\triangleright	$s, \triangleright, \rightarrow$		
comment	g or q	guess 0 or 1	the rest

- s \triangleright \sqcup
- s riangleright
- $g \quad \triangleright \square$
- $s \triangleright 0$
- $g \triangleright 0$
- $s \triangleright 01$
- $g \triangleright 01$
- $s \triangleright 0 1 1 \square$
- $g \triangleright 0 1 1 \square$
- $s \triangleright 0 \mid 1 \mid 1 \mid 0 \mid \cdots \mid 1 \mid \square$
- $q \triangleright 0 \mid 1 \mid 1 \mid 0 \mid \cdots \mid 1 \mid \square$

Definition 5.14 The set accepted by a NTM, $N: \mathcal{L}(N) \equiv \{w \in \Sigma^* \mid \text{ some run of } N(w) \text{ halts with output "1"} \}$

The time taken by N on $w \in \mathcal{L}(N)$ is the number of steps in the **shortest computation** of N(w) that accepts. \spadesuit



NTIME and NP

Lecture 5

 $\mathbf{NTIME}[t(n)] \equiv \text{probs. accepted by NTMs in time } O(t(n))$

$$\mathbf{NP} \qquad \equiv \mathbf{NTIME}[n^{O(1)}] \quad \equiv \quad \mathop{\cup}\limits_{i=1}^{\infty} \mathbf{NTIME}[n^i]$$

Theorem 5.15 For any function t(n),

$$\mathbf{DTIME}[t(n)] \subseteq \mathbf{NTIME}[t(n)] \subseteq \mathbf{DSPACE}[t(n)]$$

Recall: $\mathbf{DSPACE}[t(n)] \subseteq \mathbf{DTIME}[2^{O(t(n))}]$

Corollary 5.16

$$L \subseteq P \subseteq NP \subseteq PSPACE$$

Corollary 5.17 The definition of **Recursive** and **r.e.** are unchanged if we use nondeterministic instead of deterministic Turing machines.

