
CMPSCI 601: Summary & Conclusions Lecture 27

We’ve studied the main models and concepts of the the-
ory of computation:

� Computability: what can be computed in principle
� Logic: how can we express our requirements
� Complexity: what can be computed in practice

Problem
Mathematical

Concrete

Model

Formal Models of Computation:

� FA
� �

Regular Expression
� PDA

� �
CFG

� TM
� �

Recursive Function
� �

Boolean Circuits . . .
� logical formula
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CMPSCI 601: Regular Sets Lecture 27

Kleene’s Theorem: Let
� � ���

be any language.
Then the following are equivalent:

1.
� � � ��� 	

, for some DFA
�

.

2.
� � � ��
 	

, for some NFA



wo � transitions

3.
� � � ��
 	

, for some NFA



.

4.
� � � ���	

, for some regular expression
�
.

Myhill-Nerode Theorem: The language
�

is regular
iff � � has a finite number of equivalence classes. Fur-
thermore, this number of equivalence classes is equal to
the number of states in the minimum-state DFA that ac-
cepts

�
.

Pumping Lemma for Regular Sets: Let
� �

��� � � ������������� 	
be a DFA. Let � � ��� �

. Let � � � ��� 	
s.t.

� � �! � . Then "$# �&%'��( � � �
s.t. the following all

hold:
� # %)( � �
� � # %*�,+ �
� �-%.�,/ 0

, and
� �21.3  0�	 # %)4�( � � �5� 	
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CMPSCI 601: CFL’s Lecture 27

Closure Theorem for Context Free Languages: Let� ��� � � �
be context-free languages, let � � � �

be a
regular language, and let � � ��� � �)�

and � � �)� � � �
be homomorphisms. Then the following languages are
context-free:

1.
� � �

2.
� �

3.
� 	 �

4. � � � 	
5. ��
� � � 	

CFL Pumping Lemma: Let
�

be a CFL. Then there
is a constant � , depending only on

�
such that if

( � �
and

� ( �  � , then there exist strings � ���'� � � # � % such that( � � � � # % , and,

� ��� # �  �
,

� ��� � # � + � , and
� for all

3 � N, � �)4 � # 4 % � �
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CMPSCI 601: Recursive Sets Lecture 27

A (partial) function is recursive iff it is computed by
some TM � .

Let � � � 0 � ��� �
or � �

N.

� is a recursive set iff the function ��� is a (total) recursive
function,

��� � # 	 � 	

�


�

�
if # � �0
otherwise

� is a recursively enumerable set ( � is r.e.) iff the func-
tion  � is a (partial) recursive function,

�� � # 	 � 	

�


�

�
if # � ��
otherwise

Th: Recursive = r.e.
	

co-r.e.
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Define the primitive recursive functions to be the smallest
class of functions that

� contains the Initial functions: � ��� , and ���� , � � � ��� �
	�	
	
,� + � + � , and

� is closed under Composition, and
� is closed under Primitive Recursion

Define the Gödel recursive functions to be the smallest
class of functions that

� contains the Initial functions, and
� is closed under Composition, and
� is closed under Primitive Recursion, and
� is closed under Unbounded Mimimalization

Th: [Kleene] COMP
� � � # �� �&% 	 is a primitive recursive

predicate.

Theorem: A (partial) function is recursive iff it is
Gödel recursive.
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Cantor’s Theorem: � �
N
	

is not countable!

Proof: Suppose it were. Let � � N �������	��
�� �
�
N
	
. Define the

diagonal set,
� � � � � � � � � � 	 �

Thus
� � � � 3 	 for some

3 � N.

3 � � � 3 � � � 3 	 � 3 � �
� � Therefore, � �

N
	

is not countable! �
� 0 � � � � � � � � ����� � � � 	0

0
0 0 0 0 0 0 0 0 ����� � � 0�	� �
1

� � � � � � � ����� � � ��	� � 0
1

0 � 0 � 0 � ����� � � � 	� 0 � 0
1

0 � 0 � 0 ����� � ����	� � 0 0 0
0

0 0 0 0 ����� � ��� 	� 0 � � 0 �
0

0 0 � ����� � ��� 	� � 0 0 � 0 0
1

0 0 ����� � ����	� � � 0 0 0 0 0
0

0 ����� � ��� 	� 0 � 0 0 0 0 0 0
0

����� � ����	
... ... ... ... ... ... ... ... ... ...

����� ...

� 0 0 0 � � 0 � � ����� �
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CMPSCI 601: Uses of Diagonalization Lecture 27

� � � � � � �
� � 	 � ���

Theorem:
�

is not r.e.

Hierarchy Theorems: Let � � � 	 be a well behaved
function, and � one of DSPACE, NSPACE, DTIME, NTIME.

If � � � 	 is sufficiently smaller than � � � 	 then ��� � � � 	�� is
strictly contained in ��� � � � 	�� .
“ � � � 	 sufficiently smaller than � � � 	 ” means

�	��

����

��� ��� � ��
� 0 �	��


����
��� �������� ����� ����� � ��

� 0

� �
DSPACE

�
NSPACE

�
NTIME � �

DTIME

Hence P � � � ! " #%$ �
, L �

PSPACE.

But these are the only separations of classes we know!
(Except at the p.r. and above level, and for REG and
CFL).
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Th: The busy beaver function is eventually larger than
any total, recursive function.

Th: Let � �
N. T.F.A.E.

1. � is the domain of a partial, recursive function.

2. � � �
or � is the range of a total, recursive function.

3. � is the range of a partial, recursive function.

4. � � �
� , some � � 0 � � ��� �
	�	
	

where
�

�
� ��� � � �

� � 	 � � �
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CMPSCI 601: Logic Lecture 27

Definitions of Formula, Structure, and Truth

Axioms and Proof Rules

Modus Ponens (M.P.): From � , �
� �

, conclude
�

.

Proposition: Modus Ponens preserves validity.

Axioms: all generalizations of the following

0 Tautologies on at most three boolean variables
1a �

�
�

1b
�
� �

�
��� �

� ����� � � 4 �
��� 4 	 � � � � �

��	
	�	 �
� 4 	 � � � ��� �

��	
	�	 �
��� 4 	

1c
�
� �

�
��� �

� ��� � � � 4 �
��� 4 	 � � �

� �
�
	
	�	 �

� 4 	 � � �
��� �
�
	�	 	 �

��� 4 	
2

�21 # 	�� � 	 �
� � # � �

�
3 �

� �21 # 	�� � 	�� # not free in �
4

�21 # 	�� � � � 	 � � � 1 # 	�� � 	 � �21 # 	�� � 	 	
Proposition: Every instance of every axiom is valid.

FO-THEOREMS
� �

�
�	�

�
�

9



Soundness Theorem: If
�
� then

� �
� .

FO-THEOREMS
�

FO-VALID

Completeness Theorem: If
� �

� then
�
� .

FO-THEOREMS � FO-VALID

Corollary:
� � � � �

FO-THEOREMS
�

FO-VALID

Compactness Th: If every finite subset of
�

has a
model, then

�
has a model.

Gödel’s Incompleteness Theorem:

Theory
�
N
	

is not r.e. and thus not axiomatizable.
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CMPSCI 601: Complexity Classes Lecture 27

Th: For �
� � 	  � ��� � � 	  ����� � ,

DTIME � � � � 	�� �
NTIME � � � � 	�� �

DSPACE � � � � 	��
DSPACE � � � � 	�� �

DTIME � ��� �	� � �� � �

Savitch’s Theorem:

For
� � � 	  ���
� � ,

NSPACE � � � � 	�� �
ATIME

��� � � 	 	� �
DSPACE � ��� � � 	 	����

Immerman-Szelepcsényi Theorem:

For
� � � 	  ���
� � ,

NSPACE � � � � 	�� �
co-NSPACE � � � � 	��
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CMPSCI 601: Reductions Lecture 27

Theorem: Let � be one of the following complex-
ity classes: L, NL, P, NP, co-NP, PSPACE, EXPTIME,
Primitive-Recursive, RECURSIVE, r.e., co-r.e.

Suppose
� + �

.

If
� � � Then

� � �

All these complexity classes are closed under reduc-
tions.

Lower Bounds: If
�

is hard then
�

is hard.

Upper Bounds: If
�

is easy then
�

is easy.
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CMPSCI 601: Complete Problems Lecture 27

Complete for NL: REACH, EMPTY-DFA, EMPTY-
NFA, 2-SAT

Complete for P: CVP, MCVP, EMPTY-CFL, Horn-
SAT, REACH �

Complete for NP: TSP, SAT, 3-SAT, 3-COLOR,
CLIQUE, Subset Sum, Knapsack

Complete for PSPACE: QSAT, GEOGRAPHY,
SUCCINT-REACH, REG-EXP-

� �

Complete for r.e.:
�

, HALT,
� �

� �
� , FO-VALID

Complete for co-r.e.:
�

,
���

CFL, EMPTY, FO-SAT
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CMPSCI 601: Descriptive Complexity Lecture 27

Theorem:

r.e.
�

FO " � N 	

co-r.e.
�

FO
1 �

N
	

PH
�

SO

NP
�

SO "
P

�
SO " -Horn

AC
�

�
CRAM � � � �

LH
�

FO

One can understand the complexity of a problem as the
richness of a logical language that is needed to describe
the problem.
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CMPSCI 601: Alternation Lecture 27

Theorem: For
� � � 	  �	��� � , and for �

� � 	! � ,

� �4�� �
ATIME � � � � � 	 	 4 � � � �4�� �

DSPACE � � � � � 	 	 4 �

ASPACE � � � � 	�� � � �4�� �
DTIME � 3 � � �� �

Corollary: In particular,

ASPACE � ���
� � � �
P

ATIME � � � � � � � �
PSPACE

ASPACE � � � � � � � �
EXPTIME
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CMPSCI 601: Circuit Complexity Lecture 27

depth
�

parallel time

width
�

hardware

number of gates
�

computational work
�

sequential time

Theorem: For all
�
, CRAM � � ���
� � 	 � � �

AC
�

AC
� �

ThC
� �

NC � �
L

�
NL

�
sAC � �

AC � �
ThC � �

NC
� �

sAC
� �

...
� ...

� ...
� ...

�

AC
� �

ThC
� �

NC
��� � �

sAC
��� � �

...
� ...

� ...
� ...

�

NC
�

NC
�

NC
�

NC
�

NC
�

P
�

NP
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Alternation/Circuit Theorem:

Log-space ATM’s with:

� � � �	��� � � 	 time give NC
�
(
�  �

)
� � � �	��� � � 	 alternations give AC

�
(
�  �

)

Alternating TM’s are one good way to design uniform
families of circuits. We used this method to prove
� ��� �

sAC � .

First-order logic gives us another way to design uniform
families of circuits. We’ve used this to construct AC

�
circuits by showing a problem to be in FO.

We need uniformity definitions on our circuit classes to
relate them to ordinary classes. For example, poly-size
circuit families compute languages in P only if they are
at least P-uniform.
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Theorem: PRIME and Factoring are in NP
	

co-NP.
(PRIME is now in P as well.)

Theorem: [Solovay-Strassen, Miller]

PRIME � BPP

Fact: REACH � � BPL

Interactive Proofs

=P

NP

BPP

MA AM AM[poly] = IP = PSPACE

BP(NP)

Fact: PCP[
�	��� � � � ] = NP
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CMPSCI 601: Optimization Lecture 27�
is an optimization problem iff

For each instance # ,
� � # 	 is the set of feasible solutions

Each
� � � � # 	 has a cost

����	 � Z
�

For minimization problems,

OPT
� # 	 � 
 ���

����� ��� �
����	

For maximization problems,

OPT
� # 	 � 
 �
	

����� ��� �
����	

Let � be an algorithm s.t. on any instance # ,

� � # 	 � � � # 	

� is an � -approximation algorithm iff for all # ,� �� � � # 	 	��
OPT

� # 	��
 �
	 �
OPT

� # 	��� � � � # 	 	 	
+ � �
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exists P approx alg for

ε

poly in n, 1/ε

ε

some but not all 

< 1

all 

< 1

< 1

no ε

APPROX

P

FPTAS Knapsack

PTAS ETSP

TSPClique

∆TSPMAX SATVertexCover

INAPPROX
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co-r.e.
complete

Arithmetic Hierarchy
FO (N)

FO

E

(N)FO

A

(N)

r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP 

NP 

U

co-NP

P

NC 2

log(CFL)

SO-Horn

A SO

E

SO

SO

NC

NC

SAC

ThC

"truly feasible"

Regular

0

NSPACE[log n]

Logarithmic-Time HierarchyFO AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1
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CMPSCI 601: Where’s the Catch? Lecture 27

Why are the following so hard to prove?

� P �
NP

� P �
PSPACE

� ThC
�

�
NP

� BPP
�

P

We do know a lot about computation. Reductions and
complete problems are a key tool. So is the equivalence
of apparently different models and methods. Yet much
remains unknown.

22


