Summary & Conclusions

Lecture 27

We've studied the main models and concepts of the theory of computation:

- **Computability**: what can be computed in principle
- Logic: how can we express our requirements
- **Complexity**: what can be computed in practice

Formal Models of Computation:

- $FA \cong Regular Expression$
- PDA \cong CFG

CMPSCI 601:

- TM \cong Recursive Function \cong Boolean Circuits ...
- logical formula

Kleene's Theorem: Let $A \subseteq \Sigma^*$ be any language. Then the following are equivalent:

- 1. $A = \mathcal{L}(D)$, for some DFA D.
- 2. $A = \mathcal{L}(N)$, for some NFA N wo ϵ transitions
- 3. $A = \mathcal{L}(N)$, for some NFA N.
- 4. $A = \mathcal{L}(e)$, for some regular expression e.

Myhill-Nerode Theorem: The language A is regular iff \sim_A has a finite number of equivalence classes. Furthermore, this number of equivalence classes is equal to the number of states in the minimum-state DFA that accepts A.

Pumping Lemma for Regular Sets: Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Let n = |Q|. Let $w \in \mathcal{L}(D)$ s.t. $|w| \ge n$. Then $\exists x, y, z \in \Sigma^*$ s.t. the following all hold:

- xyz = w
- $|xy| \le n$
- |y| > 0, and
- $(\forall k \ge 0) x y^k z \in \mathcal{L}(D)$

CFL's

Closure Theorem for Context Free Languages: Let $A, B \subseteq \Sigma^*$ be context-free languages, let $R \subseteq \Sigma^*$ be a regular language, and let $h : \Sigma^* \to \Gamma^*$ and $g : \Gamma^* \to \Sigma^*$ be homomorphisms. Then the following languages are context-free:

- 1. $A \cup B$
- 2. *AB*
- 3. $A \cap R$
- 4. h(A)
- 5. $g^{-1}(A)$

CFL Pumping Lemma: Let A be a CFL. Then there is a constant n, depending only on A such that if $z \in A$ and $|z| \ge n$, then there exist strings u, v, w, x, y such that z = uvwxy, and,

- $|vx| \ge 1$,
- $|vwx| \leq n$, and
- for all $k \in \mathbf{N}$, $uv^k wx^k y \in A$

Recursive Sets

Lecture 27

A (partial) function is *recursive* iff it is computed by some TM M.

Let $S \subseteq \{0, 1\}^*$ or $S \subseteq \mathbf{N}$.

S is a *recursive set* iff the function χ_S is a (total) recursive function,

 $\chi_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$

S is a recursively enumerable set (S is r.e.) iff the function p_S is a (partial) recursive function,

$$p_S(x) = \begin{cases} 1 & \text{if } x \in S \\ \nearrow & \text{otherwise} \end{cases}$$

Th: Recursive = r.e. \cap co-r.e.

Define the *primitive recursive functions* to be the smallest class of functions that

- contains the Initial functions: ζ , σ , and π_i^n , $n = 1, 2, ..., 1 \le i \le n$, and
- is closed under **Composition**, and
- is closed under **Primitive Recursion**

Define the *Gödel recursive functions* to be the smallest class of functions that

- contains the Initial functions, and
- is closed under **Composition**, and
- is closed under **Primitive Recursion**, and
- is closed under Unbounded Mimimalization

Th: [Kleene] COMP(n, x, c, y) is a primitive recursive predicate.

Theorem: A (partial) function is recursive iff it is Gödel recursive.

Cantor's Theorem: $\wp(\mathbf{N})$ is not countable!

Proof: Suppose it were. Let $f : \mathbf{N} \stackrel{1:1}{\xrightarrow{\rightarrow}}_{onto} \wp(\mathbf{N})$. Define the diagonal set,

$$D = \{n \mid n
ot\in f(n)\}$$

Thus D = f(k) for some $k \in \mathbf{N}$.

$$k\in D \quad \Leftrightarrow \quad k\not\in f(k) \quad \Leftrightarrow \quad k\not\in D$$

 $\Rightarrow \Leftarrow$

Therefore, $\wp(\mathbf{N})$ is not countable!

n	0	1	2	3	4	5	6	7	8	• • •	f(n)
0	0	0	0	0	0	0	0	0	0	• • •	f(0)
1	1	1	1	1	1	1	1	1	1	• • •	f(1)
2	1	0	1	0	1	0	1	0	1	• • •	f(2)
3	0	1	0	1	0	1	0	1	0	• • •	f(3)
4	1	0	0	0	0	0	0	0	0	• • •	f(4)
5	0	1	1	0	1	0	0	0	1	• • •	f(5)
6	1	0	0	1	0	0	1	0	0	• • •	f(6)
7	1	1	0	0	0	0	0	0	0	• • •	f(7)
8	0	1	0	0	0	0	0	0	0	• • •	f(8)
:	:	:	:	:	:	:	:	:	:	• • •	:
	1	0	0	0	1	1	0	1	1	• • •	D

$$K = \{n \mid M_n(n) = 1\}$$

Theorem: \overline{K} is not r.e.

Hierarchy Theorems: Let f(n) be a well behaved function, and C one of DSPACE, NSPACE, DTIME, NTIME. If g(n) is sufficiently smaller than f(n) then C[g(n)] is strictly contained in C[f(n)].

"g(n) sufficiently smaller than f(n)" means $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0 \qquad \lim_{n\to\infty} \frac{g(n)\log(g(n))}{f(n)} = 0$ C =DSPACE, NSPACE, NTIME C =DTIME

Hence $\mathbf{P} \neq \mathbf{EXPTIME}$, $\mathbf{L} \neq \mathbf{PSPACE}$.

But these are the *only* separations of classes we know! (Except at the p.r. and above level, and for **REG** and **CFL**).

Th: The busy beaver function is eventually larger than any total, recursive function.

Th: Let $S \subseteq \mathbf{N}$. T.F.A.E.

1. S is the domain of a partial, recursive function.

2. $S = \emptyset$ or S is the range of a total, recursive function.

3. S is the range of a partial, recursive function.

4. $S = W_n$, some n = 0, 1, 2, ... where

$$W_n = \{m \mid M_n(m) = 1\}$$

Logic

Definitions of Formula, Structure, and Truth

Axioms and Proof Rules

Modus Ponens (M.P.): From $\varphi, \varphi \to \psi$, conclude ψ .

Proposition: Modus Ponens preserves validity.

Axioms: all generalizations of the following

0	Tautologies on at most three boolean variables
1a	t = t
1b	$(t_1 = t'_1 \land \dots \land t_k = t'_k) \rightarrow f(t_1, \dots, t_k) = f(t'_1, \dots, t'_k)$
1c	$(t_1 = t'_1 \land \dots \land t_k = t'_k) \to R(t_1, \dots, t_k) \to R(t'_1, \dots, t'_k)$
2	$(\forall x)(\varphi) \to \varphi[x \leftarrow t]$
3	$\varphi \to (\forall x)(\varphi), \qquad x \text{ not free in } \varphi$
4	$(\forall x)(\varphi \to \psi) \to ((\forall x)(\varphi) \to (\forall x)(\psi))$

Proposition: Every instance of every axiom is valid.

FO-THEOREMS = $\{\varphi \mid \vdash \varphi\}$

Soundness Theorem:If $\vdash \varphi$ then $\models \varphi$.FO-THEOREMS \subseteq FO-VALIDCompleteness Theorem:If $\models \varphi$ then $\vdash \varphi$.FO-THEOREMS \supseteq FO-VALID

Corollary:

 \vdash = \models ; FO-THEOREMS = FO-VALID

Compactness Th: If every finite subset of Γ has a model, then Γ has a model.

Gödel's Incompleteness Theorem:

Theory(\mathbf{N}) is not r.e. and thus not axiomatizable.

Th: For $t(n) \ge n, s(n) \ge \log n$, $\mathbf{DTIME}[t(n)] \subseteq \mathbf{NTIME}[t(n)] \subseteq \mathbf{DSPACE}[t(n)]$ $\mathbf{DSPACE}[s(n)] \subseteq \mathbf{DTIME}[2^{O(s(n))}]$

Savitch's Theorem:

For $s(n) \ge \log n$,

NSPACE $[s(n)] \subseteq$ **ATIME** $(s(n))^2 \subseteq$ **DSPACE** $[(s(n))^2]$

Immerman-Szelepcsényi Theorem:

For $s(n) \ge \log n$,

NSPACE[s(n)] = co-NSPACE[s(n)]

Theorem: Let C be one of the following complexity classes: L, NL, P, NP, co-NP, PSPACE, EXPTIME, Primitive-Recursive, RECURSIVE, r.e., co-r.e.

Suppose $A \leq B$. If $B \in \mathcal{C}$ Then $A \in \mathcal{C}$

All these complexity classes are **closed under reductions.**

Lower Bounds: If A is hard then B is hard.

Upper Bounds: If *B* is easy then *A* is easy.

Complete for NL: REACH, EMPTY-DFA, EMPTY-NFA, 2-SAT

Complete for P: CVP, MCVP, EMPTY-CFL, Horn-SAT, REACH $_a$

Complete for NP: TSP, SAT, 3-SAT, 3-COLOR, CLIQUE, Subset Sum, Knapsack

Complete for PSPACE: QSAT, GEOGRAPHY, SUCCINT-REACH, REG-EXP- Σ^*

Complete for r.e.: K, HALT, $A_{0,17}$, FO-VALID

Complete for co-r.e.: \overline{K} , Σ^* CFL, EMPTY, FO-SAT

Theorem:

r.e. =
$$FO\exists(N)$$

co-r.e. = $FO\forall(N)$
PH = SO
NP = $SO\exists$
P = $SO\exists$ -Horn
AC⁰ = CRAM[1] = LH = FO

One can understand the complexity of a problem as the richness of a logical language that is needed to describe the problem.

Theorem: For $s(n) \ge \log n$, and for $t(n) \ge n$, $\bigcup_{k=1}^{\infty} \operatorname{ATIME}[(t(n))^k] = \bigcup_{k=1}^{\infty} \operatorname{DSPACE}[(t(n))^k]$ **ASPACE** $[s(n)] = \bigcup_{k=1}^{\infty} \operatorname{DTIME}[k^{s(n)}]$ **Corollary:** In particular, **ASPACE** $[\log n] = \mathbf{P}$ **ATIME** $[n^{O(1)}] = \mathbf{PSPACE}$

 $\mathbf{ASPACE}[n^{O(1)}] = \mathbf{EXPTIME}$

depth = parallel time									
width = hardware									
number of gates = computational work = sequential time									
Theorem: For all <i>i</i> , CRAM $[(\log n)^i] = \mathbf{AC}^i$									
$\mathbf{A}\mathbf{C}^0 \subseteq \mathbf{T}\mathbf{h}\mathbf{C}^0$	\subseteq NC ¹	$\subseteq \ L \ \subseteq \ NL \ \subseteq \ $	\mathbf{sAC}^1	\subseteq					
$\mathbf{A}\mathbf{C}^1 \subseteq \mathbf{T}\mathbf{h}\mathbf{C}^1$	\subseteq NC ²	\subseteq	\mathbf{sAC}^2	\subseteq					
: ⊆ :	⊆ :	\subseteq	:	\subseteq					
$\mathbf{AC}^i \subseteq \mathbf{ThC}^i$	\subseteq NC ^{<i>i</i>+1}	\subseteq	\mathbf{sAC}^{i+1}	\subseteq					
: ⊆ :	⊆ :	\subseteq	:	\subseteq					
NC = NC	= NC	=	NC	=					
$\mathbf{NC} \subseteq$	Р	\subseteq	NP						

Alternation/Circuit Theorem:

Log-space ATM's with:

- $O(\log^i n)$ time give \mathbf{NC}^i $(i \ge 1)$
- $O(\log^i n)$ alternations give AC^i $(i \ge 1)$

Alternating TM's are one good way to design uniform families of circuits. We used this method to prove $\mathbf{CFL} \subseteq \mathbf{sAC}^1$.

First-order logic gives us another way to design uniform families of circuits. We've used this to construct AC^0 circuits by showing a problem to be in FO.

We need uniformity definitions on our circuit classes to relate them to ordinary classes. For example, poly-size circuit families compute languages in \mathbf{P} only if they are at least \mathbf{P} -uniform.

Theorem: PRIME and Factoring are in $NP \cap co-NP$. (PRIME is now in **P** as well.)

Theorem: [Solovay-Strassen, Miller]

$\mathsf{PRIME}\ \in\ \mathbf{BPP}$

Fact: REACH $_u \in BPL$

Interactive Proofs

Fact: $PCP[\log n, 1] = NP$

Optimization

A is an optimization problem iff

For each instance x, F(x) is the set of *feasible solutions* Each $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^+$

For minimization problems,

$$OPT(x) = \min_{s \in F(x)} c(s)$$

For maximization problems,

$$OPT(x) = \max_{s \in F(x)} c(s)$$

Let M be an algorithm s.t. on any instance x,

$$M(x) \in F(x)$$

M is an ϵ -approximation algorithm iff for all *x*,

$$\frac{|c(M(x)) - \operatorname{OPT}(x)|}{\max(\operatorname{OPT}(x), c(M(x)))} \le \epsilon$$

Why are the following so hard to prove?

- $\mathbf{P} \neq \mathbf{NP}$
- $\mathbf{P} \neq \mathbf{PSPACE}$
- $\mathbf{ThC}^0 \neq \mathbf{NP}$
- $\mathbf{BPP} = \mathbf{P}$

We do know a lot about computation. Reductions and complete problems are a key tool. So is the equivalence of apparently different models and methods. Yet much remains unknown.