CMPSCI 601 Summary & Conclusions Lecture 27

We’ve studied the main models and concepts of the the-
ory of computation:

e Computability: what can be computed in principle
e Logic: how can we express our requirements

e Complexity: what can be computed in practice

Concrete

Problem - —

Mathematical

Model

Formal Models of Computation:

e FA = Regular Expression
e PDA = CFG
e TM = Recursive Function = Boolean Circuits ...

e logical formula

CMPSCI 601 Regular Sets Lecture 27

Kleene’s Theorem: Let A C X* be any language.
Then the following are equivalent:

1. A= L(D), for some DFA D.

2. A= L(N), for some NFA N wo e transitions

3. A= L(N), for some NFA N.

4. A = L(e), for some regular expression e.
Myhill-Nerode Theorem: The language A is regular
Iff ~4 has a finite number of equivalence classes. Fur-
thermore, this number of equivalence classes is equal to

the number of states in the minimum-state DFA that ac-
cepts A.

Pumping Lemma for Regular Sets: Let D =
(@Q,%,0,q0, F) be a DFA. Letn = |Q|. Letw € L(D)
St. |w| > n. Then dz,y,z € ¥* s.t. the following all
hold:

® XYz =W
° lzy| <n

e |y| > 0, and

o (Vk > 0)zy*z € L(D)

CMPSCI 601 CFL’s L ecture 27

Closure Theorem for Context Free Languages: Let
A, B C Y* be context-free languages, let R C >* be a
regular language, and let h : >* - I™and g : [™* — X~
be homomorphisms. Then the following languages are
context-free:

1. AUB

2. AB

3.ANR

4. h(A)

5.9 (A)
CFL Pumping Lemma: Let A be a CFL. Then there
IS a constant n, depending only on A such thatif z € A
and |z| > n, then there exist strings u, v, w, z, y such that
z = uvwxy, and,

o luzx| > 1,

o lvwz| < n, and

o forall &k € N, uv*wzky € A

CMPSCI 601: Recursive Sets L ecture 27

A (partial) function is recursive iff it is computed by
some TM M.

Let S C {0,1}*or S C N.

S I1s a recursive set iff the function x s Is a (total) recursive

function,
1 ifzef§

Xs(x) = {O otherwise

S Is a recursively enumerable set (S is r.e.) iff the func-
tion pgs Is a (partial) recursive function,

(z) = 1 ifxzeS
PS\T) =1 A otherwise

Th: Recursive =r.e. N co-r.e.

Define the primitive recursive functions to be the smallest
class of functions that

e contains the Initial functions: ¢, o,and 7', n = 1,2,.. .,
1 <7<n,and

e is closed under Composition, and

e IS closed under Primitive Recursion

Define the Gddel recursive functions to be the smallest
class of functions that

e contains the Initial functions, and

e is closed under Composition, and

e is closed under Primitive Recursion, and

e is closed under Unbounded Mimimalization

Th: [Kleene] COMP(n,x, c,y) isa primitive recursive
predicate.

Theorem: A (partial) function is recursive iff it is
Gaodel recursive.

Cantor’s Theorem: p(N) is not countable!

Proof: Suppose it were. Let f : N Lj ©(N). Define the
diagonal set, m

D = {n|ngfn);
Thus D = f(k) for some k € N.

keD < ke¢flk) © ké¢D

=<« Therefore, p(N) is not countable! [)
nl0 123 456 78 ---|f(n
0{l0J0 0 00O OO0 0 ---]f(0)
1111111111 £
2/1 020 101 0 1 ---f(2)
3]0 1 010 10 1 0 ---]f(3)
4/1°0 0 0000 00 0 ---|f(4)
500 110 1000 1 - f(5
6/1 0 01 001(100--- f(6)
711710 00 0 0100 ---]£(7
80 1.0 000 0 010 ---£(8
100011011 D

CMPSCI 601: Uses of Diagonalization Lecture 27

K = {n| M,n) =1}

Theorem: Kisnotr.e.

Hierarchy Theorems: Let f(n) be a well behaved
function, and C one of DSPACE, NSPACE, DTIME, NTIME.

If g(n) is sufficiently smaller than f(n) then Clg(n)] is
strictly contained in C[f(n)].

“g(n) sufficiently smaller than f(n)” means

: g(n) _ ~ g(n)log(g(n)) _
lim,,_, o) = 0 lim,,_) =0
C = DSPACE, NSPACE,NTIME C =DTIME

Hence P ## EXPTIME, L # PSPACE.

But these are the only separations of classes we know!
(Except at the p.r. and above level, and for REG and

CFL).

Th: The busy beaver function is eventually larger than
any total, recursive function.

Th: LetS CN. T.FAE.

1. S is the domain of a partial, recursive function.
2. S =0 or S is the range of a total, recursive function.
3. S Is the range of a partial, recursive function.
4. S =W,,somen =0,1,2,...where
Wn = {m | My(m) =1}

CMPSCI 601 Logic Lecture 27

Definitions of Formula, Structure, and Truth

Axioms and Proof Rules

Modus Ponens (M.P.): From ¢, ¢ —), conclude 1.

Proposition: Modus Ponens preserves validity.

Axioms: all generalizations of the following

0 Tautologies on at most three boolean variables

la t=1t
b (f =t Ao Aty =) = fltr,e.o 1) = F(Hh, .., 1)
1c (1=t AN--- ANt =1,) = R(ty,...,tx) = R(t},..., 1))

2 (Va)(p) = plz 1
3 © — (Vx)(p), x not free in ¢
4 (Ve)(p =) = ((Vz)(p) = (Vz)(¥))

Proposition: Every instance of every axiom is valid.

FO-THEOREMS = {o | I ¢}

Soundness Theorem: If F ¢ then [o.

FO-THEOREMS C FO-VALID

Completeness Theorem: If |=¢ then + .

FO-THEOREMS O FO-VALID

Corollary:
- = FO-THEOREMS = FO-VALID
Compactness Th: If every finite subset of I' has a

model, then I" has a model.

Godel’s Incompleteness Theorem:
Theory(N) is not r.e. and thus not axiomatizable.

10

CMPSCI 601 Complexity Classes Lecture 27

Th: Fort(n) > n,s(n) > logn,
DTIME[t(n)] € NTIME[t(n)] C DSPACE[t(n)]

DSPACE[s(n)] C DTIME]29%(")]

Savitch’s Theorem:
For s(n) > logn,

NSPACE[s(n)] C ATIME(s(n))* C DSPACE](s(n))’]

Immerman-Szelepcsényi Theorem:
For s(n) > logn,

NSPACE[s(n)] = c0-NSPACE|s(n)]

11

CMPSCI 601: Reductions L ecture 27

Theorem: Let C be one of the following complex-
ity classes: L, NL, P, NP, co-NP, PSPACE, EXPTIME,
Primitive-Recursive, RECURSIVE, r.e., co-r.e.

Suppose A < B.
IfB € C Then A € C

All these complexity classes are closed under reduc-
tions.

Lower Bounds: If A is hard then B is hard.

Upper Bounds: If B is easy then A is easy.

12

CMPSCI 601 Complete Problems Lecture 27

Complete for NL: REACH, EMPTY-DFA, EMPTY-
NFA, 2-SAT

Complete for P: CVP, MCVP, EMPTY-CFL, Horn-
SAT, REACH,

Complete for NP: TSP, SAT, 3-SAT, 3-COLOR,
CLIQUE, Subset Sum, Knapsack

Complete for PSPACE: QSAT, GEOGRAPRHY,
SUCCINT-REACH, REG-EXP->*

Complete for re.: K, HALT, Ay 17, FO-VALID

Complete for co-re.: K, X*CFL, EMPTY, FO-SAT

13

CMPSCI 601 Descriptive Complexity Lecture 27

Theorem:
re. = FO3(N)
co-re. = FOV(N)

PH = SO
NP = SO4
P = SOd-Horn

LH

AC' = CRAM(1] FO

One can understand the complexity of a problem as the
richness of a logical language that is needed to describe
the problem.

14

CMPSCI 601: Alternation

Theorem: For s(n) > logn, and for t(n) > n,

::1 ATIME[(t(n))*] =

ASPACE(s(n)|] =

Corollary: In particular,
ASPACElog n]
ATIME[nCW)
ASPACE[n°W

15

::1 DSPACE](t(n))"

o0

U DTIME[k*™)]

k=1

— P
— PSPACE
— EXPTIME

Lecture 27

CMPSCI 601 Circuit Complexity Lecture 27

depth = parallel time

width = hardware
number of gates = computational work = sequential time

Theorem: Foralli, CRAM]|(logn)] = AC
AC' € ThC® € NC! C L € NL € sAC! C
AC! € Thc! ¢ NC? C SAC? C

C C C C
AC' C ThC' C NC''! C SAC'™! C

C C C C
NC = NC = NC = NC =
NC C P C NP

16

Alternation/Circuit Theorem:
Log-space ATM’s with:

e O(log' n) time give NC' (i > 1)
e O(log' n) alternations give AC' (i > 1)

Alternating TM’s are one good way to design uniform
families of circuits. We used this method to prove
CFL C sAC".

First-order logic gives us another way to design uniform
families of circuits. We’ve used this to construct AC’
circuits by showing a problem to be in FO.

We need uniformity definitions on our circuit classes to
relate them to ordinary classes. For example, poly-size
circuit families compute languages in P only if they are
at least P-uniform.

17

Theorem: PRIME and Factoring are in NP N co-NP.
(PRIME is now in P as well.)

Theorem: [Solovay-Strassen, Miller]

PRIME € BPP

Fact: REACH, € BPL

Interactive Proofs

NP
P \MA AM AM{[poly] = IP = PSPACE
1
\ / BP(NP)
BPP

Fact: PCP[logn,1] = NP

18

CMPSCI 601: Optimization Lecture 27
A 1s an optimization problem iff

For each instance z, F'(z) is the set of feasible solutions
Each s € F/(z) hasacost ¢c(s) € Z"
For minimization problems,

OPT(z) = i, c(s)

For maximization problems,

OPT(z) = Jnax, c(s)

Let M be an algorithm s.t. on any instance «,

M is an e-approximation algorithm iff for all z,

(M (z)) — OPT(z)|
max(OPT(z), c(M(z))) = © o

19

Cliaue T.SP
INAPPROX

exists P approx alg for
no ¢e<1

ATSP

MAX SAT

VeartexCover

APPROX

somebutnotall €< 1

PTAS «ETSP
al e<1

FPTAS K itpsac

polyinn, 1/e

20

Arithmetic Hierarchy re

co-r.e.
W Cco-r.e. FO(N) r.e complete

FOV (N) Recursive FO3(N)

Primitive Recursive

EXPTIME

PSPACE

co-NP Polynomial-Time Hierarchy NP

complete SO complete
P co-NP NP P

SO4
SOV NP N co-NP

"truly feasible’ SO-Horn

NC

NC 2
log(CFL) sach

NSPACE[log n]

DSPACE[log n]

1
Regular NC

Thc®

FO Logarithmic-Time Hierarchy AC

21

CMPSCI 601: Where’s the Catch? L ecture 27

Why are the following so hard to prove?

o P NP

e P = PSPACE
e ThC" £ NP
e BPP =P

We do know a lot about computation. Reductions and
complete problems are a key tool. So is the equivalence
of apparently different models and methods. Yet much
remains unknown.

22

