CMPSCI 601: Recall From Last Time L ecture 26

Theorem:

e If m is prime then Solovay-Strassen(m) returns “prob-
ably prime”.

e If m is not prime, then the probability that Solovay-
Strassen(im) returns “probably prime” is less than 1/2*.

Corollary: PRIME € “Truly Feasible”



Definition: A decision problem S is in BPP (Bounded
Probabilistic Polynomial Time) iff there is a probabilis-
tic, polynomial-time algorithm A such that for all inputs

w,

'V
Wl — Wi

If (w € S) then Prob(A(w) = 1)

VAN

If (w ¢ S) then Prob(A(w) = 1)

Equivalently, there is a probabilistic, polynomial-time
algorithm A’ such that for all » and all inputs w of length

n,
1
if (w € S) then Prob(A'(w) =1) > 1 — on

if (w & S) then Prob(A’(w) = 1) < 21

Other Randomized Classes:

e NP: Prob(A(w) =1) > 0iffw € S

e RP: Prob(A(w) =1) > 1/2forw € S,
else Prob(A(w) =1) =

e PP: Prob(A(w) =1) > 1/2forw € S
else Prob(A(w) =1) < 1/2



CMPSCI 601: Undirected Reachability Lecture 26

REACH, = {G, undirected | s_ ¢}

Fact 26.1 Let T'(i) be the expected number of stepsin a
random walk to visit all vertices in connected graph G,
starting from<. Then,

T() < 2e(n—1)
Corollary 26.2
REACH, € BPL



OnOn0

A look at this directed graph should convince you that
a random walk on it is not likely to reach all vertices in
polynomial time. To get to vertex ¢ from s you would
have to guess right about »n times in a row.

It’s very plausible that REACH,, is in L, and one might
hope to prove it by derandomizing the random walk. (There
must exist a single sequence of choices of size O(n?)
that visits every node of any undirected labelled n-node
graph.) But randomization doesn’t seem to help much
with the general REACH problem.



CMPSCI 601 Cryptography Lecture 26

One-Time Pad: p € {0,1}"; m € {0,1}"
Ep,z) = pox
D(p,z) = p®x

D(p,E(p,m)) = pd(pdm) = m



D 0110010101

m 0000111100

Epm) 10110101001

Dp,E(p,m))]0000111100
Theorem 26.3 If p is chosen at random and known only

to A and B then

1. E(p, m) provides no information to £ about m except
perhapsitslength.

2. Better not use p more than once! XOR of two mes-
sages with same pad is plaintext XOR plaintext, easy
to attack.



CMPSCI 601 RSA Lecture 26

B chooses p, g n-bit primes,

B chooses GCD(e, ¢(pq)) = 1;  ¢(pq) = (p—1)(g—1).
B publishes: pg,e; keeps p, g secret.

B computes d, k, s.t. ed + kp(pq) = 1

Break message into pieces shorter than 2n bits

Ep(x) = x° (mod pq)
Dp(z) = 2 (mod pg)
Dp(Ep(m)) = (m)*  (mod pq)
= m!*r)  (mod pg)

= m - (m?®))~* (mod pq)

= m (mod pgq)

= Ep(Dg(m)) (mod pg)



For sufficiently large n, [n > 128 Is fine in 2002],

It is widely believed that: Ez(m) divulges no useful
Information about m to anyone not knowing p, g, or d.

Message signing:
Let m = “B promises to give A $10 by 5/17/02.”
Let m’ = m or where r is nonce or current date and time

It is widely believed that: Dpg(m’) could be produced
only by B. Thus it can be used as a contract signed by
B!

Useful for proving authenticity!



CMPSCI 601: Interactive Proofs L ecture 26

(Goldwasser, Micali, Rackoff], [Babali]
Decision problem: D; input string: =

Two players:

Prover — Merlin is computationally all-powerful. Wants
to convince Verifier that x € D.

Verifier — Arthur: probabilistic polynomial-time TM.
Wants to know the truth about whether z € D.



Input=z; n=|z; t=nlW

0. A hasz M has x
1. flip o1, compute m; —
2. +— Mo
3. flip o3, compute ms —
4, — my
2t. — My

2t + 1. flip o9;11, accept or reject
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Definition 26.4 D € IP iff there iIs such a polynomial-
time interactive protocol

1. If x € D, then there exists a strategy for M
Prob{ A accepts} > g
2. If x ¢ D, then for all strategies for M
Prob{ A accepts} < ;
)

Observation 26.5 Iterating makes probabilities of error
exponentially small.

Special Cases of IP:

e Deterministic Arthur = NP
e No Merlin = BPP
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Definition 26.6 MA is the set of decision problems ad-
mitting two step proofs where Merlin moves first.

AM is the set of decision problems admitting two step
proofs where Arthur moves first.

AM[2k] = AMAM---AM PN
2k

Fact 26.7 [Babai] For all £ > 2,

AM[k] = AM

/NP

P \MA AM AM[poly] = IP= PSPACE
1

\ / BP(NP)

BPP
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Fact 26.8 [Goldwasser,Sipser] The power of interactive
proofs is unchanged if M knowns A’s coin tosses. For
al k,

IP[k] = AM[K];

)

P =  AM[ROW

13



Graph Non-Isomorphism € AM

Input = Go, G1, n = [Gof =[G

0. A has Go, G M has Go, G

1 flipr:{l,...,r} —{0,1}
flip . ....m €S,
T(Gr@), - - Tr(Grry) —
2. — My € {O, 1}T

3. accept Iff K = my
Proposition 26.9 Graph Non-lsomorphism € AM

Proof: If Gy % G4, then A will accept with probability
1.

If Gy = G4, then A will accept with probability < 277,
[ )

Corollary 26.10 If Graph Isomorphism is NP-complete
then PH collapsesto >5.
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Fact 26.11 Shamir’s Theorem: IP = PSPACE

proof that IP C PSPACE: Evaluate the game tree.
For M’s moves choose the maximum value.
For A’s moves choose the average value.

A

M) M)
I, M

Al (AL (AL (AL (A

Hard Direction:  Construct an interactive proof that a
string is in QSAT. There are proofs in [P] and in Sipser.
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CMPSCI 601 PCP’s L ecture 26

Any decision problem D € NP has a deterministic, polynomial-
time verifier.

By adding randomness to the verifier, we can greatly re-
strict its computational power and the number of bits of
I that it needs to look at, while still enabling it to accept
all of NP.

We say that a verifier A is (r(n), ¢(n))-restricted iff for
all inputs of size n, and all proofs II, A uses at most
O(r(n)) random bits and examines at most O(g(n)) bits
of its proof, II.

Let PCP(r(n), g(n)) be the set of boolean queries that are
accepted by (r(n), ¢(n))-restricted verifiers.

Fact 26.12 (PCP Theorem) NP = PCP[logn, O(1)]

Fact 26.13 [Hastad] NP = PCP[logn, 3]
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MAX-3-SAT: given a 3CNF formula, find a truth as-
signment that maximizes the number of true clauses.

(5(71\/5132\/.’17—3)/\(371 \/.’174\/.’17—5)/\($1\/£132\/£C4)/\($2\/—3\/—4>

/\(ZII—Q\/$3V$5)/\ (£U3V£U4\/SE5) /\(1171\/562\/333) A (ZE—Q\/SC—4\/£C5)

Proposition 26.14 MAX-3-SAT has a polynomial-time
e = £ approximation algorithm.

Proof: Be greedy. [

Open for Years: Assuming NP # P Is there some e,
0 < € < 1s.t. MAX-3-SAT has no PTIME e-approximation
algorithm?
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Theorem 26.15 The PCP theorem (NP = PCP|log n, 1])
IS equivalent to the fact that

If P £ NP, then

For somee, 1 > € > 0,

MAX-3-SAT has no polynomial-time, e-approximation
algorithm.

Fact 26.16 MAX-3-SAT has a PTIME approximation

algorithmwith e = % and no better ratio can be achieved
unless P = NP.

References:

e Approximation Algorithmsfor NP Hard Problems, Dorit
Hochbaum, ed., 1997, PWS.

e Sanjeev Arora, “The Approximability of NP-hard Prob-
lems”, STOC 98, www.cs.princeton.edu/~arora.
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