Theorem:

- If *m* is prime then Solovay-Strassen(*m*) returns "probably prime".
- If m is not prime, then the probability that Solovay-Strassen(m) returns "probably prime" is less than $1/2^k$.

Corollary: PRIME \in "Truly Feasible"

Definition: A decision problem S is in **BPP** (Bounded Probabilistic Polynomial Time) iff there is a probabilistic, polynomial-time algorithm A such that for all inputs w,

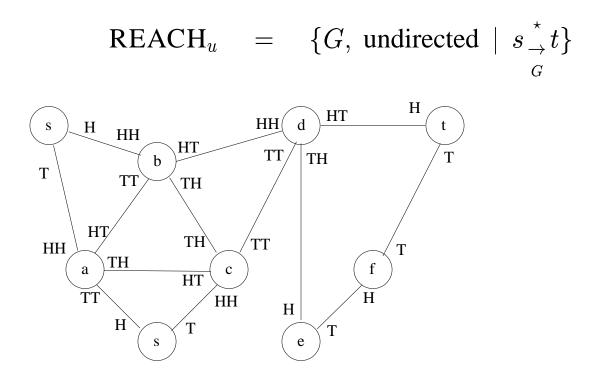
if
$$(w \in S)$$
 then $\operatorname{Prob}(A(w) = 1) \ge \frac{2}{3}$
if $(w \notin S)$ then $\operatorname{Prob}(A(w) = 1) \le \frac{1}{3}$

Equivalently, there is a probabilistic, polynomial-time algorithm A' such that for all n and all inputs w of length n,

if
$$(w \in S)$$
 then $\operatorname{Prob}(A'(w) = 1) \ge 1 - \frac{1}{2^n}$
if $(w \notin S)$ then $\operatorname{Prob}(A'(w) = 1) \le \frac{1}{2^n}$

Other Randomized Classes:

- NP: $\operatorname{Prob}(A(w) = 1) > 0$ iff $w \in S$
- **RP**: $\operatorname{Prob}(A(w) = 1) \ge 1/2$ for $w \in S$, else $\operatorname{Prob}(A(w) = 1) = 0$
- **PP**: $\operatorname{Prob}(A(w) = 1) > 1/2$ for $w \in S$, else $\operatorname{Prob}(A(w) = 1) < 1/2$

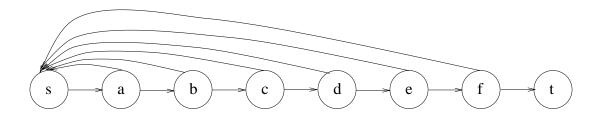


Fact 26.1 Let T(i) be the expected number of steps in a random walk to visit all vertices in connected graph G, starting from *i*. Then,

$$T(i) \leq 2e(n-1)$$

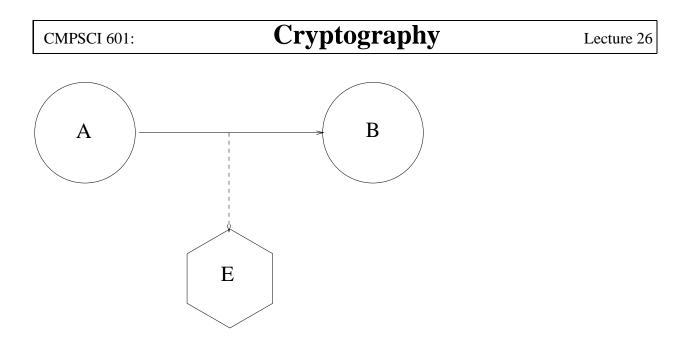
Corollary 26.2

 $REACH_u \in BPL$



A look at this *directed* graph should convince you that a random walk on it is *not* likely to reach all vertices in polynomial time. To get to vertex t from s you would have to guess right about n times in a row.

It's very plausible that REACH_u is in L, and one might hope to prove it by derandomizing the random walk. (There must exist a single sequence of choices of size $O(n^3)$ that visits every node of *any* undirected labelled *n*-node graph.) But randomization doesn't seem to help much with the general REACH problem.



One-Time Pad: $p \in \{0,1\}^n$; $m \in \{0,1\}^n$ $E(p,x) = p \oplus x$ $D(p,x) = p \oplus x$ $D(p,E(p,m)) = p \oplus (p \oplus m) = m$

p	0	1	1	0	0	1	0	1	0	1
m	0	0	0	0	1	1	1	1	0	0
E(p,m)	0	1	1	0	1	0	1	0	0	1
D(p, E(p, m))	0	0	0	0	1	1	1	1	0	0

Theorem 26.3 If p is chosen at random and known only to A and B then

- 1. E(p,m) provides no information to E about m except perhaps its length.
- 2. Better not use p more than once! XOR of two messages with same pad is plaintext XOR plaintext, easy to attack.

B chooses p, q n-bit primes,

 $B \text{ chooses GCD}(e,\varphi(pq)) = 1; \quad \varphi(pq) = (p-1)(q-1).$

B publishes: pq, e; keeps p, q secret.

B computes d,k, s.t. $ed+k\varphi(pq)=1$

Break message into pieces shorter than 2n bits

$E_B(x)$	\equiv	x^e	$(\mathrm{mod}\; pq)$
$D_B(x)$	≡	x^d	$(\mathrm{mod}\; pq)$
$D_B(E_B(m))$	≡	$(m^e)^d$	$(\mathrm{mod}\; pq)$
	\equiv	$m^{1-karphi(pq)}$	$(\mathrm{mod}\; pq)$
	\equiv	$m \cdot (m^{arphi(pq)})^{-k}$	$(\mathrm{mod}\; pq)$
	≡	m	$(\mathrm{mod}\; pq)$
	\equiv	$E_B(D_B(m))$	$(\mathrm{mod}\; pq)$

For sufficiently large n, $[n \ge 128$ is fine in 2002],

It is widely believed that: $E_B(m)$ divulges no useful information about *m* to anyone not knowing *p*, *q*, or *d*.

Message signing:

Let m = "B promises to give A \$10 by 5/17/02." Let $m' = m \circ r$ where r is nonce or current date and time

It is widely believed that: $D_B(m')$ could be produced only by B. Thus it can be used as a contract signed by B!

Useful for proving authenticity!

CMPSCI 601:

[Goldwasser, Micali, Rackoff], [Babai]

Decision problem: D; input string: x

Two players:

Prover — Merlin is computationally all-powerful. Wants to convince Verifier that $x \in D$.

Verifier — Arthur: probabilistic polynomial-time TM. Wants to know the truth about whether $x \in D$. Input = x; n = |x|; $t = n^{O(1)}$

0.	A has x	\mathbf{M} has x
1.	flip σ_1 , compute $m_1 \longrightarrow$	
2.		$\leftarrow - m_2$
3.	flip σ_3 , compute $m_3 \longrightarrow$	
4.		$\leftarrow m_4$
•	:	•
2t.		$\leftarrow m_{2t}$
2t + 1.	flip σ_{2t+1} , accept or reject	

Definition 26.4 $D \in IP$ iff there is such a polynomialtime interactive protocol

 If x ∈ D, then there exists a strategy for M Prob{A accepts} > 2/3
 If x ∉ D, then for all strategies for M Prob{A accepts} < 1/3

Observation 26.5 *Iterating makes probabilities of error exponentially small.*

Special Cases of IP:

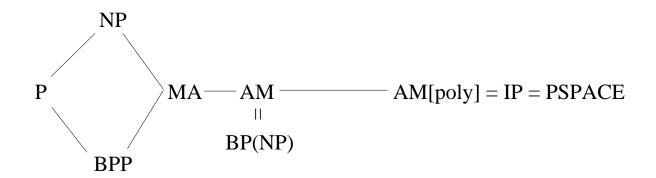
- Deterministic Arthur = **NP**
- No Merlin = **BPP**

Definition 26.6 MA is the set of decision problems admitting two step proofs where Merlin moves first.

AM is the set of decision problems admitting two step proofs where Arthur moves first.

 $\mathbf{AM}[2k] = \underbrace{AMAM \cdots AM}_{2k}$

Fact 26.7 [Babai] For all $k \ge 2$, AM[k] = AM



Fact 26.8 [Goldwasser,Sipser] The power of interactive proofs is unchanged if M knowns A's coin tosses. For all k,

 $\mathbf{IP}[k] \quad = \quad \mathbf{AM}[k]; \qquad \mathbf{IP} \quad = \quad \mathbf{AM}[n^{O(1)}]$

Graph Non-Isomorphism \in AM

Input =
$$G_0, G_1, n = ||G_0|| = ||G_1||$$

0. **A** has G_0, G_1 **M** has G_0, G_1
1. flip $\kappa : \{1, \dots, r\} \rightarrow \{0, 1\}$
flip $\pi_1, \dots, \pi_r \in S_n$
 $\pi_1(G_{\kappa(1)}), \dots, \pi_r(G_{\kappa(r)}) \longrightarrow$
2. $\leftarrow m_2 \in \{0, 1\}^r$
3. accept iff $\kappa = m_2$

Proposition 26.9 *Graph Non-Isomorphism* \in AM

Proof: If $G_0 \ncong G_1$, then **A** will accept with probability 1. If $G_0 \cong G_1$, then **A** will accept with probability $\leq 2^{-r}$.

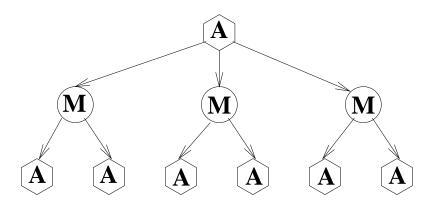
Corollary 26.10 If Graph Isomorphism is NP-complete then PH collapses to Σ_2^p .

Fact 26.11 Shamir's Theorem: IP = **PSPACE**

proof that IP \subseteq **PSPACE:** Evaluate the game tree.

For M's moves choose the maximum value.

For A's moves choose the average value.





Hard Direction: Construct an interactive proof that a string is in QSAT. There are proofs in [P] and in Sipser.

CMDSCI 601.	PCP's	Lastura 26
CMPSCI 601:		Lecture 26

Any decision problem $D \in \mathbf{NP}$ has a deterministic, polynomialtime verifier.

By adding randomness to the verifier, we can greatly restrict its computational power and the number of bits of Π that it needs to look at, while still enabling it to accept all of **NP**.

We say that a verifier A is (r(n), q(n))-restricted iff for all inputs of size n, and all proofs Π , A uses at most O(r(n)) random bits and examines at most O(q(n)) bits of its proof, Π .

Let PCP(r(n), q(n)) be the set of boolean queries that are accepted by (r(n), q(n))-restricted verifiers.

Fact 26.12 (PCP Theorem) $NP = PCP[\log n, O(1)]$

Fact 26.13 [Hastad] $NP = PCP[\log n, 3]$

MAX-3-SAT: given a 3CNF formula, find a truth assignment that maximizes the number of true clauses.

 $(x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_4 \lor \overline{x_5}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$ $\land (\overline{x_2} \lor x_3 \lor x_5) \land (\overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_4} \lor x_5)$

Proposition 26.14 MAX-3-SAT has a polynomial-time $\epsilon = \frac{1}{2}$ approximation algorithm.

Proof: Be greedy.

Open for Years: Assuming $NP \neq P$ is there some ϵ , $0 < \epsilon < 1$ s.t. MAX-3-SAT has no PTIME ϵ -approximation algorithm?

Theorem 26.15 *The PCP theorem* ($NP = PCP[\log n, 1]$)

is equivalent to the fact that

If $\mathbf{P} \neq \mathbf{NP}$, then

For some ϵ , $1 > \epsilon > 0$,

MAX-3-SAT has no polynomial-time, ϵ -approximation algorithm.

Fact 26.16 MAX-3-SAT has a PTIME approximation algorithm with $\epsilon = \frac{1}{8}$ and no better ratio can be achieved unless $\mathbf{P} = \mathbf{NP}$.

References:

- Approximation Algorithms for NP Hard Problems, Dorit Hochbaum, ed., 1997, PWS.
- Sanjeev Arora, "The Approximability of NP-hard Problems", STOC 98, www.cs.princeton.edu/~arora.