
CMPSCI 601: Recall: Circuit Complexity Lecture 24

depth � parallel time

width � hardware

number of gates � computational work � sequential time

Theorem: For all
�
, CRAM �������	��
����� � AC �

AC � � ThC � � NC � � L � NL � sAC � �
AC � � ThC � � NC � � sAC � � �����

� �
��� � NC � � � �

��� � AC � � � �
��� � ThC � � NC � P

NC �����
!�"� � ParallelTime �#���$
�"� on real hardware

AC �����
!�"� � CRAM �#���$
�"�
ThC �#���$
!�%� � ParallelTime �#���$
!�%� on “wet-ware”

sAC � � AC � but & -gates bounded

1

Alternation/Circuit Theorem

For
��� �

:

� NC � equals ATM’s with � �����	�
!� space, � ��� � � �
!� time
� AC � equals ATM’s with � � � � �
!� space, � ����� � �
!� al-

ternations

Proof: Simulate ATM’s by circuits by making a node
for each configuration. Simulate circuits by ATM’s using
the Circuit Game.

Note the AC � case of the statement of this theorem is
false. AC � is not equal to ATM’s with � ����� �
!� space and
� � � � alternations: that’s the logspace hierarchy, known
by Immerman-Szelepcsenyi to be just NL.

What AC � actually equals is the log-time hierarchy, ATM’s
with � �����	�
!� time and � � � � alternations. This is also
equal to FO given the suitable precise definitions.

2

sAC �#���$
!�"� Circuit

t(n)

b
1b

1

r

b b
bb

2
2

n
n

and

or

not

and

or

or

y

unbounded “or”s; bounded “and”s

Fact 24.1 sAC � � LOG(CFL) � ��� � � CFL � � � �
� ���

3

CMPSCI 601: Alternation and CFL’s Lecture 24

We’ll conclude the discussion of parallel complexity by
showing where another one of our existing classes, the
context-free languages, fit into the NC hierarchy.

Theorem 24.2 (Ruzzo) If � is any context-free grammar,� ��� ��� sAC � .
Proof: Using the Alternation/Circuit theorem, we’ll prove
this by designing an ATM game for

� ��� � that has the fol-
lowing properties:

� White wins the game on input � iff � � � ��� � ,
� the game uses � � � � �
!� space,
� the number of alternations is � ����� ��
!� , and
� all Black’s alternation phases consist of a single bit

move.

When we covert this game to a circuit, the last clause
ensures that all the AND gates have fan-in two, so we are
in sAC � . (Though our best upper bound for REACH is
also sAC � , it is believed that REACH is not complete for
sAC � while there are CFL’s that are complete for it.)

4

Let’s assume � is in Chomsky normal form. We have an
input string � , and White claims there is a way to derive� � � using the rules of � . Black, as usual, disputes
this.

White advances her claim by naming a node in the middle
of the parse tree and saying what it does. Specifically, for
some

�
, � , and � she says

� � � ������� � � � ���
	 ������� �� and� � � � 	 � ����� � � . Black picks one of these two claims to
challenge.

If White is telling the truth about the orginal claim, she
can get two true claims by telling the truth. But if she is
lying, one of her two subsidiary claims must be a lie. We
continue the process until we have a claim about a single
input letter, such as � � � � , which can be verified by
looking up the input letter and checking the rules of � .

5

This is a valid ATM game that decides whether � �� ��� � , but it does not yet meet our specification. There
are two problems:

� The game could last as long as
 �
�

moves, rather
than the � � � � �
!� we need, and

� The subclaim under dispute might not be specifiable
in space � � � � ��
!� , as it has the form

� � � � � ����� � � �
� � ��� ����� � ���

� � �
	 ����� � �
� �
We need � ����� �
� bits to record each “scar” in the
string.

We solve the first problem by setting a fair time limit on
White. If she has not reduced the claim to one letter in
� �����	�
!� moves, she loses. But why is this fair? On her
move, she is dividing the parse tree of � into two pieces
by cutting an edge.

Lemma: (Lipton-Tarjan) Any binary tree can be cut on
some edge into two pieces, each at most 2/3 the original
size. (Proof on HW#8.)

So since White is so smart, she can choose her division
to leave smaller subtrees, and after � ��� � �
!� moves she
can reduce the subtree to one node.

6

To solve the second problem, we force White to make
sure that the current claim is about a tree with at most
three scars, giving her � ����� �
� more moves to spend on
this goal.

Lemma: Let � be any rooted binary tree and let � , � ,
and � be any three nodes none of which is an ancestor of
another. Then there exists a node � that is an ancestor of
exactly two of � , � , and � . (Proof on HW#8.)

Now if White is faced with a tree with scars at � , � , and � ,
we force her to find some � and divide the tree there. This
may not shrink the tree under dispute very much, but it
makes sure that on the next move, the two subclaims have
only two scars each.

White still wins the revised game iff she should, and the
revised game now fits all the specifications. �

7

CMPSCI 601: � � � � -Depth Threshold Circuits Lecture 24

What we call ThC � here is often called TC � elsewhere.

ThC � is the set of languages solvable by threshold cirucits
of poly size and constant depth.

We proved ThC � � NC � by showing how to add

 -bit
numbers in NC � , using ambiguous binary notation, base
two with digits ����� � ������� � .

This has the effect that there are now many different “funny”
ways to write the same number. The idea is that we can
add two funny numbers in NC � , so add
 of them in NC � ,
and finally convert the funny result to standard binary in
AC � � NC � .

8

I mangled that proof slightly last lecture, and will fix it
now. Remember that we want to add two funny num-
bers, and get a funny result, without having to propagate
carries.

First, in each column
�

we add two numbers from ����� � � � � � �
to get a result � � in the range from � through

�
. We will

carry a number � � and keep � � � � � � for this columns re-
sult. But we have to choose � � carefully to avoid carry
propagation – our goal is that for each

�
, the final result

� � � � � � � � ��� � will be in ����� � � � � � � .

How does column
�

set � � ? The principle is that each
column will carry as much as it knows that it can safely,
up to 3. So the column looks at � ��� �

� � , adds it to � � ,
and sets � � to be the minimum of 3 and that sum over
2. Since � ��� � will be at least what it expected, � � won’t
be too large. And since � ��� � can be only two more than
expected, � � won’t be too small.

9

Some problems in TC � :
� Addition of two
 -bit numbers is in FO � AC � (the

carry look-ahead adder)

� Addition of

 -bit numbers is in ThC � � AC � (by
ambiguous notation)

� Multiplication of two
 -bit numbers is in ThC � � AC �
� Sorting of

 -bit numbers is in ThC � . (Compare

each of the
 � pairs in parallel, then count up the wins
for each item to get its place.)

� Division (and iterated multiplication) of two
 -bit num-
bers (to
 bits of accuracy) is in polynomial-time uni-
form ThC � . ([BCH86], [Reif87], using Chinese re-
mainder notation)

� Division is in (first-order uniform) ThC � . ([Bill Hesse01],
[HAB02])

10

CMPSCI 601: PSPACE Lecture 24

PSPACE � DSPACE �
�� � � � � � NSPACE �#
�� � � � �

� PSPACE consists of what we could compute with a
feasible amount of hardware, but with no time limit.

� PSPACE is a large and very robust complexity class.
� With polynomially many bits of memory, we can search

any implicitly-defined graph of exponential size. This
leads to complete problems such as reachability on
exponentially-large graphs.

� We can search the game tree of any board game whose
configurations are describable with polynomially-many
bits. This leads to complete problems concerning win-
ning strategies.

11

CMPSCI 601: PSPACE-Complete Problems Lecture 24

Recall Lecture 22,

PSPACE � ATIME �
�� � � � �
Recall QSAT, the quantified satisfiability problem.

Proposition 24.3 QSAT is PSPACE-complete.

Proof: QSAT is in ATIME[n] (Lecture 22).

12

QSAT is hard for ATIME �#
�� � :
Let

�
be an arbitrary ATIME �
 � � machine.

Let
�

write down its
�� alternating choices, � � � � ����� � � ,
and then deterministically evaluate its input, using the
choice vector � .

Let the corresponding DTIME �
 � � machine be � .

For all inputs � ,
� � � � � � � � � � � � ��� � � � �����	��� � � � � ��� � � � � � � � �
By the proof of Cook’s Theorem there is a reduction 	
from

� ��� � to SAT,

� � � � � � � � � 	� � � � ��� SAT

Let the new boolean variables in 	� � � � � be � � ����� ��
 � � .�
accepts � iff

“ � � � � � ��� � � � �	���	��� � � � � � � � � ����� �
 � � �	� � � � � ” � QSAT

�

13

GEOGRAPHY is a game with players � and � , played
on a directed graph with start node � .

1. � chooses a vertex � � with an edge from � .
2. � chooses � � , having an edge from � �
3. � chooses ��� , have an edge from � �

And so on. No vertex may be chosen twice. Whoever
moves last wins.

Texas

Selma

Amherst

Transylvania

Africa

Proposition 24.4 Figuring out which player has a win-
ning strategy in a given position of GEOGRAPHY is

14

PSPACE-complete.

Proof:

GEOGRAPHY � PSPACE: search the polynomial-
depth game tree.

15

Show: QSAT � GEOGRAPHY

Given formula, � , build graph � � s.t. � chooses existen-
tial variables; � chooses universal variables.

e.g., � � � ��� � � � ��� � � ��� & � � ��� � � & � ��� �� �"�

(a v b)

(b v c)

(b v c)

a

a

b

c

c

b

16

Definition 24.5 A succinct representation of a graph is
� �$
 � � � � ��� � � � � � � � where

�
is a boolean circuit with

�
 inputs and

� � � � � � � ����� � � �

� � � � � � ����� � � � � � � ��� � � �

SUCCINCT REACH � � �
 � � � � � � � � � �$
 � � � � REACH �
�

Proposition 24.6 SUCCINCT REACH is PSPACE-complete.

Proof: This is assigned as a problem on Homework 8. �

Suitably generalized to
 by
 versions, Go and Chess
are also both PSPACE-complete. In general, an
 by

 game where the playing board can change is going to
be PSPACE-complete because it can simulate alternating
poly-time. A game where � � � � pieces move around on a
board is going to be P-complete because it can simulate
alternating log space.

17

CMPSCI 601: Barrington’s Theorem Lecture 24

A permutation of a finite set
�

is a one-to-one onto func-
tion from

�
to itself, The composition of two permuta-

tions is the permutation we get by performing first one
and then the next. Composition is not commutative –
the set of all permutations of five elements form the non-
commutative group

���
with composition as the operation.

The
���

iterated multiplication problem (
���

-MULT) is to
input
 elements of

���
(in order) and determine their

composition. Clearly a DFA can do this, so
���

-MULT
is a regular language.

Theorem 24.7
���

-MULT is complete for NC � . Specif-
ically, if

�
is an
 -input circuit of depth � and fan-in

two, we can take a string � of length
 and construct
a sequence of

���
permutations that multiplies to a non-

identity permutation iff
� �	� � � �

.

18

Notation: A five-cycle is � � � � ��� � is the permutation
that takes � to � , � to � , � to � , � to � , and � to � , where� a,b,c,d,e � = � 1,2,3,4,5 � .

Lemma: There exist five-cycles � and � ��� such that
����� � � � � � is a five-cycle. (This permutation is called the
commutator of � and � .)

Proof: � � � � �	� � � � � � � � � � � � ��� � � � � �	� � � � � � � ��� � � � .
Fact: (basic group theory) If
 and � are both five-
cycles, then
 � � � � � for some permutation �

19

Proof: (of Barrington’s Theorem) Use induction on the
depth � of the circuit. For each gate � we’ll construct a
sequence � ��� � such that � ��� � evaluates to a five-cycle if �
evaluates to 1 and � ��� � evaluates to the identity otherwise.
By the Fact, if we can get one five-cycle we can get any
other with a sequence of the same length.

Base Case: � � � and the gate is an input. Look up the
literal and let � ��� � consist of one permutation, � � � � �	� � if
the literal is true and the identity if it is false.

NOT Gates: If � is the NOT of � , compose � ��� � with
� � � ��� � � . This gives the identity if � is true and � � � ��� � � if
� is false. Using the Fact, normalize to give � � � � �	� � if �
is true and the identity if � is false.

20

AND Gates: Suppose � is the AND of � � and � � and
each of � � and � � have depth � . Using � ��� � � and � ��� � � , we
construct four sequences of length

� �
each:

� � � yields � � � � �	� � if � � is true and the identity other-
wise,

� � � yields � � � � � � � if � � is true and the identity other-
wise,

� � � yields � � � ��� � � if � � is true and the identity other-
wise, and

� � � yields � � �	� � � � if � � is true and the identity other-
wise.

Calculation: ��� � � � � � � yields � � ��� � � � if � � and � � are
both true, and the identity otherwise.

Conclusion: If
�

is a depth � ����� ��
!� circuit, we get
a sequence of length

�
�
������� � , which is polynomial. We

have reduced the circuit evaluation problem to an
� �

-
MULT instance that is only polynomial size. �

21

Application to PSPACE

Fact: PSPACE is characterized by circuits of polyno-
mial depth.

Corollary: Any PSPACE problem can be reduced to
an instance of

���
-MULT of length � �

��� � � � .

Corollary: (Cai-Furst) Any PSPACE problem can be
solved by a log-space Turing machine that:

� has access to a read-only clock
� wipes its memory every poly-many steps, except for

three safe bits.

22

