CMPSCI 601: Recall: Circuit Complexity

$$
\begin{gathered}
\text { depth }=\text { parallel time } \\
\text { width }=\text { hardware }
\end{gathered}
$$

number of gates $=$ computational work $=$ sequential time
Theorem: For all $i, \quad \operatorname{CRAM}\left[(\log n)^{i}\right]=\mathbf{A C}^{i}$ $\mathbf{A C}^{0} \subseteq \mathbf{T h C}^{0} \subseteq \mathbf{N C}^{1} \subseteq \mathbf{L} \subseteq \mathbf{N L} \subseteq \mathbf{s A C}^{1} \subseteq$ $\mathbf{A C}^{1} \subseteq \mathbf{T h C}^{1} \subseteq \mathbf{N C}^{2} \quad \subseteq \mathbf{s A C}^{2} \subseteq \ldots$

$$
\bigcup_{i=0}^{\infty} \mathbf{N} \mathbf{C}^{i}=\bigcup_{i=0}^{\infty} \mathbf{A} \mathbf{C}^{i}=\bigcup_{i=0}^{\infty} \mathbf{T h} \mathbf{C}^{i}=\mathbf{N C} \subseteq \mathbf{P}
$$

$\mathbf{N C}[t(n)]=$ ParallelTime $[t(n)]$ on real hardware $\mathbf{A C}[t(n)]=\mathbf{C R A M}[t(n)]$
$\mathbf{T h C}[t(n)]=$ ParallelTime $[t(n)]$ on "wet-ware"
$\mathbf{s A C}^{i}=\mathbf{A C}^{i}$ but \wedge-gates bounded

Alternation/Circuit Theorem

For $i \geq 1$:

- NC ${ }^{i}$ equals ATM's with $O(\log n)$ space, $O\left(\log ^{i} n\right)$ time
- AC ${ }^{i}$ equals ATM's with $O(\log n)$ space, $O\left(\log ^{i} n\right)$ alternations

Proof: Simulate ATM's by circuits by making a node for each configuration. Simulate circuits by ATM's using the Circuit Game.

Note the $\mathbf{A C}^{0}$ case of the statement of this theorem is false. $\mathbf{A C}^{0}$ is not equal to ATM's with $O(\log n)$ space and $O(1)$ alternations: that's the logspace hierarchy, known by Immerman-Szelepcsenyi to be just NL.

What $\mathbf{A C}^{0}$ actually equals is the log-time hierarchy, ATM's with $O(\log n)$ time and $O(1)$ alternations. This is also equal to FO given the suitable precise definitions.

$\mathbf{s A C}[t(n)]$ Circuit

unbounded "or"s; bounded "and"s

Fact $24.1 \mathbf{s A C}^{1}=\mathbf{L O G}(\mathbf{C F L})=\{A \mid \exists \operatorname{CFL} L(A \leq$ L) \}

We'll conclude the discussion of parallel complexity by showing where another one of our existing classes, the context-free languages, fit into the NC hierarchy.

Theorem 24.2 (Ruzzo) If G is any context-free grammar, $\mathcal{L}(G) \in \mathbf{s A C}{ }^{1}$.

Proof: Using the Alternation/Circuit theorem, we'll prove this by designing an ATM game for $\mathcal{L}(G)$ that has the following properties:

- White wins the game on input w iff $w \in \mathcal{L}(G)$,
- the game uses $O(\log n)$ space,
- the number of alternations is $O(\log n)$, and
- all Black's alternation phases consist of a single bit move.

When we covert this game to a circuit, the last clause ensures that all the AND gates have fan-in two, so we are in $\mathbf{S A C}{ }^{1}$. (Though our best upper bound for REACH is also $\mathbf{S A C}{ }^{1}$, it is believed that REACH is not complete for $\mathbf{s A C}^{1}$ while there are CFL's that are complete for it.)

Let's assume G is in Chomsky normal form. We have an input string w, and White claims there is a way to derive $S \rightarrow w$ using the rules of G. Black, as usual, disputes this.

White advances her claim by naming a node in the middle of the parse tree and saying what it does. Specifically, for some i, j, and A she says $S \rightarrow w_{1} \ldots w_{i} A w_{j+1} \ldots w_{n}$ and $A \rightarrow w_{i+1} \ldots w_{j}$. Black picks one of these two claims to challenge.

If White is telling the truth about the orginal claim, she can get two true claims by telling the truth. But if she is lying, one of her two subsidiary claims must be a lie. We continue the process until we have a claim about a single input letter, such as $A \rightarrow w_{i}$, which can be verified by looking up the input letter and checking the rules of G.

This is a valid ATM game that decides whether $w \in$ $\mathcal{L}(G)$, but it does not yet meet our specification. There are two problems:

- The game could last as long as $n-1$ moves, rather than the $O(\log n)$ we need, and
- The subclaim under dispute might not be specifiable in space $O(\log n)$, as it has the form

$$
A \rightarrow w_{i_{1}} \ldots w_{i_{2}} B w_{i_{3}} \ldots w_{i_{4}} C w_{i_{5}} \ldots w_{i_{k}} .
$$

We need $O(\log n)$ bits to record each "scar" in the string.

We solve the first problem by setting a fair time limit on White. If she has not reduced the claim to one letter in $O(\log n)$ moves, she loses. But why is this fair? On her move, she is dividing the parse tree of w into two pieces by cutting an edge.

Lemma: (Lipton-Tarjan) Any binary tree can be cut on some edge into two pieces, each at most $2 / 3$ the original size. (Proof on HW\#8.)

So since White is so smart, she can choose her division to leave smaller subtrees, and after $O(\log n)$ moves she can reduce the subtree to one node.

To solve the second problem, we force White to make sure that the current claim is about a tree with at most three scars, giving her $O(\log n)$ more moves to spend on this goal.

Lemma: Let T be any rooted binary tree and let a, b, and c be any three nodes none of which is an ancestor of another. Then there exists a node d that is an ancestor of exactly two of a, b, and c. (Proof on HW\#8.)

Now if White is faced with a tree with scars at a, b, and c, we force her to find some d and divide the tree there. This may not shrink the tree under dispute very much, but it makes sure that on the next move, the two subclaims have only two scars each.

White still wins the revised game iff she should, and the revised game now fits all the specifications.

cmpsci 601: $\quad O(1)$-Depth Threshold Circuits Lecture 24

What we call ThC ${ }^{i}$ here is often called $\mathbf{T C}^{i}$ elsewhere.
$\mathbf{T h C}{ }^{0}$ is the set of languages solvable by threshold cirucits of poly size and constant depth.
We proved $\mathbf{T h C}^{0} \subseteq \mathbf{N C}^{1}$ by showing how to add $n n$-bit numbers in $\mathbf{N C}^{1}$, using ambiguous binary notation, base two with digits $\{0,1,2,3\}$.
This has the effect that there are now many different "funny" ways to write the same number. The idea is that we can add two funny numbers in $\mathbf{N C}^{0}$, so add n of them in $\mathbf{N C}^{1}$, and finally convert the funny result to standard binary in $\mathbf{A C}^{0} \subseteq \mathbf{N C}^{1}$.

I mangled that proof slightly last lecture, and will fix it now. Remember that we want to add two funny numbers, and get a funny result, without having to propagate carries.
First, in each column i we add two numbers from $\{0,1,2,3\}$ to get a result r_{i} in the range from 0 through 6 . We will carry a number c_{i} and keep $r_{i}-2 c_{i}$ for this columns result. But we have to choose c_{i} carefully to avoid carry propagation - our goal is that for each i, the final result $r_{i}-2 c_{i}+c_{i-1}$ will be in $\{0,1,2,3\}$.
How does column i set c_{i} ? The principle is that each column will carry as much as it knows that it can safely, up to 3 . So the column looks at $r_{i-1} / 2$, adds it to r_{i}, and sets c_{i} to be the minimum of 3 and that sum over 2. Since c_{i-1} will be at least what it expected, c_{i} won't be too large. And since c_{i-1} can be only two more than expected, c_{i} won't be too small.

Some problems in $\mathbf{T C}^{0}$:

- Addition of two n-bit numbers is in $\mathrm{FO}=\mathbf{A C}^{0}$ (the carry look-ahead adder)
- Addition of $n n$-bit numbers is in $\mathbf{T h C}^{0}-\mathbf{A C}^{0}$ (by ambiguous notation)
- Multiplication of two n-bit numbers is in $\mathbf{T h C}^{0}-\mathbf{A C}^{0}$
- Sorting of $n n$-bit numbers is in $\mathbf{T h C}^{0}$. (Compare each of the n^{2} pairs in parallel, then count up the wins for each item to get its place.)
- Division (and iterated multiplication) of two n-bit numbers (to n bits of accuracy) is in polynomial-time uniform ThC ${ }^{0}$. ([BCH86], [Reif87], using Chinese remainder notation)
- Division is in (first-order uniform) $\mathbf{T h C}^{0}$. ([Bill Hesse01], [HAB02])

PSPACE $=$ DSPACE $\left[n^{O(1)}\right]=$ NSPACE $\left[n^{O(1)}\right]$

- PSPACE consists of what we could compute with a feasible amount of hardware, but with no time limit.
- PSPACE is a large and very robust complexity class.
- With polynomially many bits of memory, we can search any implicitly-defined graph of exponential size. This leads to complete problems such as reachability on exponentially-large graphs.
- We can search the game tree of any board game whose configurations are describable with polynomially-many bits. This leads to complete problems concerning winning strategies.

CMPSCI 601: PSPACE-Complete Problems \quad Lecture 24

Recall Lecture 22,
PSPACE $=$ ATIME $\left[n^{O(1)}\right]$
Recall QSAT, the quantified satisfiability problem.
Proposition 24.3 QSAT is PSPACE-complete.

Proof: QSAT is in ATIME[n] (Lecture 22).

QSAT is hard for ATIME $\left[n^{k}\right]$:
Let M be an arbitrary ATIME $\left[n^{k}\right]$ machine.
Let M write down its n^{k} alternating choices, $c_{1} c_{2} \ldots c_{n}$, and then deterministically evaluate its input, using the choice vector \bar{c}.
Let the corresponding DTIME $\left[n^{k}\right]$ machine be D.
For all inputs w,
$M(w)=1 \quad \Leftrightarrow \quad\left(\exists c_{1}\right)\left(\forall c_{2}\right) \cdots\left(Q_{n^{k}} c_{n^{k}}\right)(D(\bar{c}, w)=1)$
By the proof of Cook's Theorem there is a reduction f from $\mathcal{L}(D)$ to SAT,

$$
D(\bar{c}, w)=1 \quad \Leftrightarrow \quad f(\bar{c}, w) \in \mathrm{SAT}
$$

Let the new boolean variables in $f(\bar{c}, w)$ be $d_{1} \ldots d_{t(n)}$. M accepts w iff

$$
\text { " }\left(\exists c_{1}\right)\left(\forall c_{2}\right) \cdots\left(Q_{n^{k}} c_{n^{k}}\right)\left(\exists d_{1} \ldots d_{t(n)}\right) f(\bar{c}, w) " \in \text { QSAT }
$$

GEOGRAPHY is a game with players E and A, played on a directed graph with start node s.

1. E chooses a vertex v_{1} with an edge from s.
2. A chooses v_{2}, having an edge from v_{1}
3. E chooses v_{3}, have an edge from v_{2}

And so on. No vertex may be chosen twice. Whoever moves last wins.

Texas

Transylvania

Proposition 24.4 Figuring out which player has a winning strategy in a given position of GEOGRAPHY is

PSPACE-complete.

Proof:

GEOGRAPHY \in PSPACE: search the polynomialdepth game tree.

Show: QSAT \leq GEOGRAPHY

Given formula, φ, build graph G_{φ} s.t. E chooses existential variables; A chooses universal variables.
e.g., $\quad \varphi \equiv \exists a \forall b \exists c[(a \vee b) \wedge(\bar{b} \vee c) \wedge(b \vee \bar{c})]$

Definition 24.5 A succinct representation of a graph is $G(n, C)=(V, E, s, t)$ where C is a boolean circuit with $2 n$ inputs and

$$
\begin{aligned}
& V=\left\{w \mid w \in\{0,1\}^{n}\right\} \\
& E=\left\{\left(w, w^{\prime}\right) \mid C\left(w, w^{\prime}\right)=1\right\}
\end{aligned}
$$

SUCCINCT REACH $=\{(n, C, s, t) \mid G(n, C) \in \operatorname{REACH}\}$

Proposition 24.6 SUCCINCT REACH is PSPACE-complete.

Proof: This is assigned as a problem on Homework 8.

Suitably generalized to n by n versions, Go and Chess are also both PSPACE-complete. In general, an n by n game where the playing board can change is going to be PSPACE-complete because it can simulate alternating poly-time. A game where $O(1)$ pieces move around on a board is going to be \mathbf{P}-complete because it can simulate alternating log space.

CMPSCI 601: Barrington's Theorem

A permutation of a finite set S is a one-to-one onto function from S to itself, The composition of two permutations is the permutation we get by performing first one and then the next. Composition is not commutative the set of all permutations of five elements form the noncommutative group S_{5} with composition as the operation.

The S_{5} iterated multiplication problem (S_{5}-MULT) is to input n elements of S_{5} (in order) and determine their composition. Clearly a DFA can do this, so S_{5}-MULT is a regular language.

Theorem $24.7 S_{5}$-MULT is complete for $\mathbf{N C}^{1}$. Specifically, if C is an n-input circuit of depth d and fan-in two, we can take a string x of length n and construct a sequence of 4^{d} permutations that multiplies to a nonidentity permutation iff $C(x)=1$.

Notation: A five-cycle is (abcde) is the permutation that takes a to b, b to c, c to d, d to e, and e to a, where $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}=\{1,2,3,4,5\}$.

Lemma: There exist five-cycles σ and tau such that $\sigma \tau \sigma^{-1} \tau^{-1}$ is a five-cycle. (This permutation is called the commutator of σ and τ.)

Proof: $\quad(12345)(13542)(54321)(24531)=(13254)$.
Fact: (basic group theory) If α and β are both fivecycles, then $\alpha=\gamma \beta \gamma^{1}$ for some permutation γ

Proof: (of Barrington's Theorem) Use induction on the depth d of the circuit. For each gate g we'll construct a sequence $s(g)$ such that $s(g)$ evaluates to a five-cycle if g evaluates to 1 and $s(g)$ evaluates to the identity otherwise. By the Fact, if we can get one five-cycle we can get any other with a sequence of the same length.

Base Case: $\quad d=0$ and the gate is an input. Look up the literal and let $s(g)$ consist of one permutation, (12345) if the literal is true and the identity if it is false.

NOT Gates: If h is the NOT of g, compose $s(g)$ with (54321). This gives the identity if g is true and (54321) if g is false. Using the Fact, normalize to give (12345) if h is true and the identity if h is false.

AND Gates: \quad Suppose h is the AND of g_{1} and g_{2} and each of g_{1} and g_{2} have depth d. Using $s\left(g_{1}\right)$ and $s\left(g_{2}\right)$, we construct four sequences of length 4^{d} each:

- a_{1} yields (12345) if g_{1} is true and the identity otherwise,
- a_{2} yields (13542) if g_{2} is true and the identity otherwise,
- b_{1} yields (54321) if g_{1} is true and the identity otherwise, and
- b_{2} yields (24531) if g_{2} is true and the identity otherwise.

Calculation: $\quad a_{a} a_{2} b_{1} b_{2}$ yields (13254) if g_{1} and g_{2} are both true, and the identity otherwise.

Conclusion: If C is a depth $O(\log n)$ circuit, we get a sequence of length $4^{O(\log n)}$, which is polynomial. We have reduced the circuit evaluation problem to an $S_{5^{-}}$ MULT instance that is only polynomial size.

Application to PSPACE

Fact: PSPACE is characterized by circuits of polynomial depth.

Corollary: Any PSPACE problem can be reduced to an instance of S_{5}-MULT of length $2^{O(\log n)}$.

Corollary: (Cai-Furst) Any PSPACE problem can be solved by a log-space Turing machine that:

- has access to a read-only clock
- wipes its memory every poly-many steps, except for three safe bits.

