CMPSCI 601: Recall From Last Time L ecture 22

Definition: Alternating time and space

Game Semantics: State of machine determines who
controls, White wants it to accept, Black wants it to re-
ject. L£L(A) = {w : White wins the M-game on input
w}.

Examples:

1. MCVP € ASPACE|log n]
2. QSAT € ATIME|n]
Theorem: For s(n) > logn,

NSPACE([s(n)] C ATIME[(s(n))?] C DSPACE[(s(n))’]
ASPACE[s(n)] = DTIME[20¢M)

Corollary:
ASPACE(logn| = P
ATIME[n°Y] = PSPACE
ASPACE[n°Y] = EXPTIME

1

CMPSCI 601 Parallel Computation Lecture 22

The Turing machine and the abstract RAM are sequential
machines, in that they perform only one operation at a
time.

Real computers are largely sequential as well, but:
e Modern computer networks allow us to apply many
processors to the same problem (e.g, SETI @one),

e Modern programming languages allow for parallel ex-
ecution threads,

e Modern processors are slightly parallel, with the ca-
pacity to do a few things at the same time,

e There have been some experimental massively paral-
lel computers such as the Connection Machine, and

e The circuit elements inside a given chip operate in
parallel.

Can we solve any problem a million times faster by ap-
plying a million parallel processors to it? Probably not,
but as with the P vs. NP question we don’t have any the-
orems confirming our intuition.

Parallel complexity theory studies the resources needed
to solve problems in parallel. To begin such a study we
need a formal model of parallel computation, analogous
to the Turing machine or RAM.

As It turns out, just as the TM and RAM have similar
behavior with respect to time and space, various differ-
ent parallel models have similar behavior with respect to
parallel time and amount of hardware.

Parallel Random Access Machines
CRAM[t(n)] = CRCW-PRAM-TIME[¢t(n)]-HARD[r®]

synchronous, concurrent read and write, uniform,

n?W) processors and memory

priority write: lowest number processor wins conflict
common write: no conflicts allowed

The alternating Turing machine is another parallel model
of sorts, since the “acceptance behavior” depends on the
entire set of configurations.

The parallel time measure turns out to be the number of
alternations between existential and universal states:

Theorem 22.1 For logn < t(n) < n®Y, CRAM[t(n)]
IS equal to the class of languages of ATM’s with space
O(logn) and O(t(n)) alternations.

We won’t prove this here (I might put it on HW#8), but
we’ll show that ATM’s are closely related to another par-
allel computing model, that of boolean circuits.

CS601/CM730-A: LH and PH L ecture 22

An important special case of ATM computation is when
the number of alternations is bound by a constant. \We
use the same names for constant-alternation classes that
we defined for the Arithmetic Hierarchy in HW#5. For
example,

1P consists of the languages of poly-time ATM’s that
always stay in existential states, that is, NP.

I1,P is the same for only universal states, that is, co-NP.

>oP consists of the languages of poly-time ATM’s that
have a phase of existential configurations followed by a
phase of universals. II;P Is the complement of >5P, and
SO on.

PH is defined to be the union of X;P and II;P for all con-
stant ¢, or languages of poly-time ATM’s with O(1) alter-
nations.

Theorem 22.2 PH = SO.

The proof is a simple generalization of Fagin’s Theorem,
NP = SO4.

The Logtime Hierarchy

On HW #7 we’re looking at ATM’s that operate in O(log n)
time, making key use of their random-access input tape.
You’re asked to prove that such an ATM can decide:

e any language in FO, and also

e the PARITY language, of strings with an odd number
of 1’s

PARITY is not in FO, though we won’t be able to prove
such a lower bound in this course.

The complexity class LH, the log-time hierarchy, is the
set of languages decidable in ATIME(logn) with O(1)
alternations. Your HW solution will most likely show
that FO C LH. It turns out that with the right definition
of FO, FO = LH.

CMPSCI 601 Circuit Complexity L ecture 22

Real computers are built from many copies of small and
simple components.

Circuit complexity uses circuits of boolean logic gates as
Its model of computation.

Circuits are directed acyclic graphs. Inputs are placed at
the leaves. Signals proceed up toward the root, r.

Straight-line code: gates are not reused.
Let S C {0, 1}* be a decision problem.
Let, C:, Csy, Ch, . .. be a circuit family.
C, has n input bits and one output bit 7.

Def: {C;}, N computes S iff for all n and for all w €
10,137,
w e S & Cly|(w) =1.

or

and

or
and

OI’ O O

o o t(n)
n?t/(' / /
b, b b
b b 2 b n
1 2 n

“not” gates are pushed down to bottom

Depth = parallel time

Number of gates = computational work = sequential time

CMPSCI 601 Circuit Uniformity L ecture 22

Consider the class PSIZE of languages A that are com-
puted by a family of poly-size circuits. That is, for each
n, there is a circuit C', that accepts an input string w iff
w € A.

It is easy to see from our construction for Fagin’s Theo-
rem that P C PSIZE. Also since CVP is in P, it seems
that PSIZE should be no more powerful than P.

But as we’ve defined PSIZE, it contains undecidable lan-
guages! Look at UK = {w : |w| € K} for example. For
any input length n, there iIs a one-gate circuit that decides
whether the input is in U K. it either says yes or says no
without looking at the input at all. So UK is in PSZE,
but it’s clearly r.e.-complete as it’s just a recoding of K.

10

But this circuit is non-uniform. Given a number n, it Is
Impossible for any Turing machine, much less a poly-
time TM, to determine what C,, Is.

Let’s define P-uniform PSIZE to be those languages de-
cided by poly-time circuit families where we can com-
pute C,, from the string 1”7 in n°Y time. Now it’s easy
to see that P-uniform PSIZE is contained in P, because
our machine on input w can first build the circuit), and
then solve the CVP problem that tells what C,,| does on
Input w.

And in fact the tableau construction tells us that P is con-
tained in P-uniform PSIZE, because the circuit from the
tableau Is easy to construct. In fact it’s very easy to con-
struct — we could do it in F'(L) or even in F'(FO). Thus
we have:

Theorem: P = P-uniform PSIZE = L-uniform PSIZE
= FO-uniform PSIZE.

11

Definition 22.3 (The NC Hierarchy) Let¢(n) be a poly-
nomially bounded function and let S C {0,1}* Then
S is in the circuit complexity class NC|¢t(n)], AC[t(n)],
ThClt(n)], respectively iff there exists a uniform family
of circuits C', Cs, . . . with the following properties:

LForallwe {0,1}, weS <& Cylw) =1

2. The depth of C), is O(t(n)).

3. |Cp| < nPW

4. The gates of), consist of,

NC AC ThC
bounded fan-in unbounded fan-in unbounded fan-in
and, or gates and, or gates threshold gates

5y B s

12

For:=0,1,...,

NC' = NCJ[(logn)]
AC' = AC|(logn)"]

ThC' = ThC|(logn)’]

NC = ‘fj’ONci _ TJOOAC@’ _ ‘fj’OThCi

1

7

7

We will see that the following inclusions hold:

AC’ ¢ ThC' C NC'CLCNL C AC!
AC! C Thc! C NC? C AC?
AC? C ThC? C NC° C AC’
: C : C i C i
ij’lAci = fij’lThci = ij’lNci = NC

13

The word uniform above means that the map, f : 1" —
C, is very easy to compute, for example, f € F(L) or
f € F(FO). Though these uniformity conditions are a
subject dear to my heart, we won’t worry too much about
the details of them in this course.

Overall, NC consists of those problems that can be solved
In poly-log parallel timeon a parallel computer with poly-
nomially much hardware. The question of whether P =
NC is the second most important open question in com-
plexity theory, after the P = NP question.

You wouldn’t think that every problem in P can be sped
up to polylog time by parallel processing. Some prob-
lems appear to be inherently sequential. If we prove that
a problem is P-complete, we know that it is not in NC
unless P = NC.

Theorem: CVP, MCVP and HORN-SAT are all P-
complete.

14

Proposition 22.4 Every regular languageisin NC'.

Proof: Given DFA D = (3,0, 6, s, F).
Construct circuits Cy, Cs, . . ., forall w € >*,

w € L(D) < C’|w|(w) =1

15

By a very similar argument, you can show that every reg-
ular language is in ATIME(log n). Actually, with a suit-
able uniformity condition,

Theorem: (Ruzzo) NC!' = ATIME(logn).

16

Theorem 22.5 (Barrington-lmmerman-Sraubing) FO =
AC’

Proof:(Sketch of one direction, with some uniformity de-
tails skipped)

o = (Fz)(Vy)(32)M(z,y, 2)

17

Proposition 22.6 For: = 0,1, ...,
NC' C AC' C ThC' C NC*!

Proof:
All inclusions but ThC* € NC“*! are clear.

MAJ = {w € {0,1}* | w has more than |w|/2 “1”’s} € ThC"

Lemma22.7 MAJ < NC!
(and the same for any other threshold gate).

18

The obvious way to try to build an NC* circuit for major-
Ity is to add the n input bits via a full binary tree of height
log n. The problem with this, is that while the sums being
added have more and more bits, we must still add them
In constant depth.

@% @

THEDEHEHEHEHEHEE

\
XX Xy Xy X5 % X% %g 1%2

19

A solution to this problem is via ambiguous arithmetic
notation. Consider a representation of natural numbers
In binary, except that digits 0,1, 2,3 may be used. For
example 3213 and 3221 are different representations of
the decimal number 37 in this ambiguous notation,

3213 = 3-234+2-2241-214+3.20 = 37

3221 = 3.-224+42.2242.2141.20 = 37

20

Lemma 22.8 Adding two n bit numbers in ambiguous
notation can be doneviaan NC" circuit, i.e., with bounded
depth and bounded fan-in.

Example:

carries: 3 2 2 3

+
NW W
NN N
RS
ol w W

3

This is doable in NC° because the carry from column i
can be computed by looking only at columns ¢ and ¢ + 1.

Translating from ambiguous notation back to binary, which
must be done only once at the end, Is just an addition
problem. This is first-order, and thus AC", and thus NC'.

)

21

Arithmetic Hierarchy re

co-r.e.
W co-r.e. r.e complete

Recursive

Primitive Recursive

EXPTIME

PSPACE

co-NP Polynomial-Time Hierarchy NP

complete complete

co-NP NP
NP N co-NP

"truly feasible"

NC

NC 2

log(CFL) sact

NSPACE[log n]

DSPACE[log n]

1
Regular NC

ThC

L ogarithmic-Time Hierarchy AC’

22

