Definitions:

- An alphabet is a non-empty finite set, e.g., $\Sigma=\{0,1\}$, etc.
- The set of regular expressions $R(\Sigma)$ over alphabet Σ.
- A language is regular iff it is denoted by some regular expression.
- A DFA is a tuple, $D=(Q, \Sigma, \delta, s, F)$.
- An NFA is a tuple, $N=(Q, \Sigma, \Delta, s, F)$.

Prop 1.2: Every NFA N can be translated into an NFA, N^{\prime}, which has the same number of states but no ϵ-transitions, s.t. $\mathcal{L}(N)=\mathcal{L}\left(N^{\prime}\right)$.

Proposition 1.3: For every NFA, N, with n states, there is a DFA, D, with at most 2^{n} states s.t. $\mathcal{L}(D)=\mathcal{L}(N)$.
Proof: Let $N=\left(Q, \Sigma, \Delta, q_{0}, F\right)$. By Proposition 1.2 may assume that N has no ϵ transitions.
Let $D=\left(\wp(Q), \Sigma, \delta,\left\{q_{0}\right\}, F^{\prime}\right)$

$$
\begin{aligned}
\delta(S, a) & =\bigcup_{r \in S} \Delta(r, a) \\
F^{\prime} & =\{S \subseteq Q \mid S \cap F \neq \emptyset\}
\end{aligned}
$$

N

D

Claim: For all $w \in \Sigma^{\star}$,

$$
\delta^{\star}\left(\left\{q_{0}\right\}, w\right)=\Delta^{\star}\left(q_{0}, w\right)
$$

By induction on $|w|$:
$|w|=0: \delta^{\star}\left(\left\{q_{0}\right\}, \epsilon\right)=\left\{q_{0}\right\}=\Delta^{\star}\left(q_{0}, \epsilon\right)$
$|w|=k+1: w=u a$.
Inductively, $\delta^{\star}\left(\left\{q_{0}\right\}, u\right)=\Delta^{\star}\left(q_{0}, u\right)$

$$
\begin{aligned}
\delta^{\star}\left(\left\{q_{0}\right\}, u a\right) & =\delta\left(\delta^{\star}\left(\left\{q_{0}\right\}, u\right), a\right) \\
& =\underset{r \in \delta^{\star}\left(\left\{q_{0}\right\}, u\right)}{\cup} \Delta(r, a) \\
& =\underset{r \in \Delta^{\star}\left(q_{0}, u\right)}{\cup} \Delta(r, a) \\
& =\Delta^{\star}(q, u a)
\end{aligned}
$$

Therefore, $\mathcal{L}(D)=\mathcal{L}(N)$.

Theorem 1.4 (Kleene's Th) Let $A \subseteq \Sigma^{\star}$ be any language. Then the following are equivalent:

1. $A=\mathcal{L}(D)$, for some DFA D.
2. $A=\mathcal{L}(N)$, for some NFA N wo ϵ transitions
3. $A=\mathcal{L}(N)$, for some NFA N.
4. $A=\mathcal{L}(e)$, for some regular expression e.
5. A is regular.

Proof: Obvious that $1 \rightarrow 2 \rightarrow 3$.
$3 \rightarrow 2$ by Prop. 1.2.
$2 \rightarrow 1$ by Prop. 1.3 (subset construction).
$4 \leftrightarrow 5$ by def of regular
$4 \rightarrow 3$: We show by induction on the number of symbols in the regular expression e, that there is an NFA N with $\mathcal{L}(e)=\mathcal{L}(N):$

$$
e=a \quad e=\varepsilon \quad e=\emptyset
$$

Union
$\mathrm{L}(\mathrm{N})=\mathrm{L}\left(\mathrm{N}_{1}\right)+\mathrm{L}\left(\mathrm{N}_{2}\right)$

$$
\begin{gathered}
\text { Kleene Star } \\
\mathrm{L}(\mathrm{~N})=\left(\mathrm{L}\left(\mathrm{~N}_{1}\right)\right)^{*}
\end{gathered}
$$

Concatenation

$$
\mathrm{L}(\mathrm{~N})=\mathrm{L}\left(\mathrm{~N}_{1}\right) \mathrm{L}\left(\mathrm{~N}_{2}\right)
$$

$$
3 \rightarrow 4: \text { Let } N=(\{1, \ldots, n\}, \Sigma, \Delta, 1, F), F=\left\{f_{1}, \ldots, f_{r}\right\}
$$

$$
L_{i j}^{k} \equiv\left\{w \mid j \in \Delta^{\star}(i, w) ; \text { no intermediate state } \#>k\right\}
$$

$$
L_{i j}^{0}=\{a \mid j \in \Delta(i, a)\} \cup\{\epsilon \mid i=j\}
$$

$$
L_{i j}^{k+1}=L_{i j}^{k} \cup L_{i k+1}^{k}\left(L_{k+1 k+1}^{k}\right)^{\star} L_{k+1, j}^{k}
$$

$$
e=L_{1 f_{1}}^{n} \cup \cdots \cup L_{1 f_{r}}^{n}
$$

$$
\mathcal{L}(e)=\mathcal{L}(N)
$$

Let $A \subseteq \Sigma^{\star}$ be any language.

Define the right-equivalence relation \sim_{A} on Σ^{\star} :

$$
x \sim_{A} y \quad \Leftrightarrow \quad\left(\forall w \in \Sigma^{\star}\right)(x w \in A \leftrightarrow y w \in A)
$$

$x \sim_{A} y$ iff x and y cannot be distinguished by concatenating some string w to the right of each of them and testing for membership in A.

Example: $\quad A_{1}=\left\{w \in\{a, b\}^{\star} \mid \#_{b}(w) \equiv 0(\bmod 2)\right\}$

$$
\epsilon \sim_{A_{1}} a \sim_{A_{1}} a a \quad b \sim a b \sim b b b
$$

Claim: $\quad x \sim_{A_{1}} y$ iff $\#_{b}(x) \equiv \#_{b}(y)(\bmod 2)$.
Proof: Suppose $x \sim_{A_{1}} y$. Let $w=\epsilon$.

$$
x w=x \in A_{1} \quad \leftrightarrow \quad y w=y \in A_{1}
$$

Thus, $\quad \#_{b}(x) \equiv \#_{b}(y)(\bmod 2)$.

Suppose, $\quad \#_{b}(x) \equiv \#_{b}(y)(\bmod 2)$.

$$
\begin{aligned}
& (\forall w) \#_{b}(x w) \equiv \#_{b}(y w)(\bmod 2) \\
& (\forall w)\left(x w \in A_{1} \quad \leftrightarrow \quad y w \in A_{1}\right)
\end{aligned}
$$

Thus, $x \sim_{A_{1}} y$.

$$
\begin{aligned}
{[u]_{\sim_{A}} } & =\left\{w \in \Sigma^{\star} \mid u \sim_{A} w\right\} \\
{[a] } & =\left\{w \in\{a, b\}^{\star} \mid \#_{b}(w) \equiv 0(\bmod 2)\right\} \\
{[b] } & =\left\{w \in\{a, b\}^{\star} \mid \#_{b}(w) \equiv 1(\bmod 2)\right\}
\end{aligned}
$$

Exercise: Show that for any language A, \sim_{A} is an equivalence relation. Recall that an equivalence relation is a binary relation that is reflexive, symmetric, and transitive.

Proof: Reflexive: $\left(\forall x \in \Sigma^{\star}\right)\left(x \sim_{A} x\right)$
Let $x, w \in \Sigma^{\star}$ be arbitrary.

$$
(x w \in A \leftrightarrow x w \in A)
$$

$\left(\forall w \in \Sigma^{\star}\right)(x w \in A \leftrightarrow x w \in A)$ because w was arbitrary.

$$
x \sim_{A} x
$$

$\left(\forall x \in \Sigma^{\star}\right)\left(x \sim_{A} x\right)$ because x was arbitrary.

Symmetric: $\quad\left(\forall x, y \in \Sigma^{\star}\right)\left(x \sim_{A} y \rightarrow y \sim_{A} x\right)$

Let $x, y, \in \Sigma^{\star}$ be arbitrary.
Suppose $x \sim_{A} y$.

$$
\begin{gathered}
(\forall w)(x w \in A \leftrightarrow y w \in A) \\
(\forall w)(y w \in A \leftrightarrow x w \in A) \\
y \sim_{A} x \\
x \sim_{A} y \rightarrow y \sim_{A} x \\
\left(\forall x, y \in \Sigma^{\star}\right)\left(x \sim_{A} y \rightarrow y \sim_{A} x\right)
\end{gathered}
$$

Transitive:

$$
\left(\forall x, y, z \in \Sigma^{\star}\right)\left(\left(x \sim_{A} y \wedge y \sim_{A} z\right) \rightarrow x \sim_{A} z\right)
$$

Let $x, y, z \in \Sigma^{\star}$ be arbitrary.
Suppose $x \sim_{A} y \wedge y \sim_{A} z$.

$$
\begin{aligned}
& (\forall w)(x w \in A \leftrightarrow y w \in A) \\
& (\forall w)(y w \in A \leftrightarrow z w \in A)
\end{aligned}
$$

Let $w \in \Sigma^{\star}$ be arbitrary.

$$
\begin{aligned}
& (x w \in A \leftrightarrow y w \in A) \\
& (y w \in A \leftrightarrow z w \in A) \\
& (x w \in A \leftrightarrow z w \in A)
\end{aligned}
$$

$\left(\forall w \in \Sigma^{\star}\right)(x w \in A \leftrightarrow z w \in A)$ because w was arbitrary.

$$
\begin{gathered}
x \sim_{A} z \\
\left(x \sim_{A} y \wedge y \sim_{A} z\right) \rightarrow x \sim_{A} z
\end{gathered}
$$

$$
\left(\forall x, y, z \in \Sigma^{\star}\right)\left(x \sim_{A} y \wedge y \sim_{A} z\right) \rightarrow x \sim_{A} z \text { because }
$$ x, y, z were arbitrary.

- To prove $(\forall x) \varphi$: let x be arbitrary, prove φ, conclude $(\forall x) \varphi$.
- To prove $\varphi \rightarrow \psi$: assume φ, prove ψ, conclude $\varphi \rightarrow$ ψ.
- From $\varphi \wedge \psi$ may conclude φ, ψ.
- From φ, ψ may conclude $\varphi \wedge \psi$.
- To prove φ : assume $\neg \varphi$, prove $A \wedge \neg A$, conclude φ.

Myhill-Nerode Theorem: The language A is regular iff \sim_{A} has a finite number of equivalence classes. Furthermore, this number of equivalence classes is equal to the number of states in the minimum-state DFA that accepts A.
Proof: Suppose $A=\mathcal{L}(D)$ for some DFA,

$$
D=\left(\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}, \Sigma, \delta, q_{1}, F\right)
$$

Let $S_{i}=\left\{w \mid \delta^{\star}\left(q_{1}, w\right)=q_{i}\right\}$
Claim: Each S_{i} contained in single \sim_{A} equivalence class.
Let $x, y \in S_{i}, w \in \Sigma^{\star}$ be arbitrary.

$$
\begin{gathered}
\delta^{\star}\left(q_{1}, x w\right)=\delta^{\star}\left(\delta^{\star}\left(q_{1}, x\right), w\right)=\delta^{\star}\left(\delta^{\star}\left(q_{1}, y\right), w\right)=\delta^{\star}\left(q_{1}, y w\right) \\
\mathcal{L}(D)=\left\{z \mid \delta^{\star}\left(q_{1}, z\right) \in F\right\} \\
x w \in A \leftrightarrow \delta^{\star}\left(q_{1}, x w\right) \in F \leftrightarrow \delta^{\star}\left(q_{1}, y w\right) \in F \leftrightarrow y w \in A \\
(\forall w)(x w \in A \leftrightarrow y w \in A) \\
x \sim_{A} y
\end{gathered}
$$

Thus, there are at most n equivalence classes!

Conversely, suppose that there are finitely many equivalence classes of $\sim_{A}: E_{1}, \ldots, E_{m}$.
Let $[x]$ be the equivalence class that x is in.
Define $D=\left(\left\{E_{1}, \ldots, E_{m}\right\}, \Sigma, \delta,[\epsilon], F\right)$ where

$$
\begin{aligned}
F & =\{[x] \mid x \in A\} \\
\delta([x], a) & =[x a]
\end{aligned}
$$

Must show that δ is well defined, i.e.,

$$
([x]=[y]) \quad \Rightarrow \quad([x a]=[y a])
$$

Suppose $x \sim_{A} y$.

$$
\begin{gathered}
(\forall w)(x w \in A \leftrightarrow y w \in A) \\
(\forall w)(x a w \in A \leftrightarrow y a w \in A)
\end{gathered}
$$

Thus, $x a \sim_{A} y a$.
Claim: $\quad \delta^{\star}([\epsilon], x)=[x]$.
Proof: by induction on $|x|$ [exercise].

$$
x \in \mathcal{L}(D) \leftrightarrow \delta^{\star}([\epsilon], x) \in F \leftrightarrow[x] \in F \leftrightarrow x \in A
$$

Example: Prove that the following language is regular and its minimal DFA has seven states:

$$
\begin{aligned}
A_{7} & =\left\{w \in\{0,1, \ldots, 9\}^{\star}|7| w\right\} \\
D_{7} & =\left(\{0,1, \ldots, 6\}, \Sigma, \delta_{7}, 0,\{0\}\right) \\
\delta_{7}(q, d) & =(10 q+d) \bmod 7=(3 q+d) \bmod 7
\end{aligned}
$$

Must show $\mathcal{L}\left(D_{7}\right)=A_{7}$ [exercise]; and,

$$
(\forall i \neq j \in\{0,1, \ldots, 6\})\left(i \not \nsim A_{A_{7}} j\right)
$$

Let $i \neq j \in\{0,1, \ldots, 6\}$ be arbitrary.
Pick d s.t. $3 i+d \equiv 0(\bmod 7)$. Suppose $3 j+d \equiv$ $0(\bmod 7)$.

$$
\begin{aligned}
3 i+d & \equiv 3 j+d(\bmod 7) \\
3 i & \equiv 3 j(\bmod 7) \\
15 i & \equiv 15 j(\bmod 7) \\
i & \equiv j(\bmod 7)
\end{aligned}
$$

$\Rightarrow \Leftarrow$

Thus, $i \circ d \in A_{7}, j \circ d \notin A_{7}, i \not \nsim A_{A_{7}} j$.

Example: Show $E=\left\{a^{n} b^{n} \mid n \in \mathbf{N}\right\}$ is not regular.
pf: Let $i \neq j \in \mathbf{N}$ be arbitrary.
We will show that $a^{i} \chi_{E} a^{j}$.
Let $w=b^{i}$

$$
a^{i} w \in E ; \quad a^{j} w \notin E
$$

Thus \sim_{E} has infinitely many equivalence classes.
Thus by the Myhill-Nerode Theorem, E is not regular.

A language homomorphism is a function $h: \Sigma^{\star} \rightarrow \Gamma^{\star}$ s.t.

$$
\begin{equation*}
\left(\forall x, y \in \Sigma^{\star}\right)(h(x y)=h(x) h(y)) \tag{2.0}
\end{equation*}
$$

Examples:

$$
\begin{aligned}
h:\{0,1,2,3\}^{\star} \rightarrow & \{a, b\}^{\star} \\
h(0)=a a, h(1)=b, & h(2)=a b a, h(3)=\epsilon \\
h(012310)= & a a b a b a b a a \\
g:\{a, b\} & \rightarrow\{a, b, c\} \\
g(a)=a, & g(b)=c b c \\
g(b a a)= & c b c a a
\end{aligned}
$$

Notation: for function $f: A \rightarrow B$, sets $S \subseteq A, T \subseteq B$, $f(S)=\{f(a) \mid a \in S\} ; \quad f^{-1}(T)=\{a \in A \mid f(a) \in T\}$

Example:

$$
\begin{aligned}
A_{1} & =\left\{w \in\{a, b\}^{\star} \mid \#_{b}(w) \equiv 0(\bmod 2)\right\} \\
h^{-1}\left(A_{1}\right) & =\left\{w \in\{0,1,2,3\}^{\star} \mid \#_{1}(w)+\#_{2}(w) \equiv 0(\bmod 2)\right\} \\
g\left(A_{1}\right) & =\left\{w \in\{a, b, c\}^{\star} \mid \#_{c b c} \equiv 0(\bmod 2) ; \text { no other } \mathrm{b} \text { or } \mathrm{c}\right\}
\end{aligned}
$$

Closure Theorem for Regular Sets: Let $A, B \subseteq \Sigma^{\star}$ be regular languages and let $h: \Sigma^{\star} \rightarrow \Gamma^{\star}$ and $g: \Gamma^{\star} \rightarrow \Sigma^{\star}$ be homomorphisms. Then the following languages are regular:

1. $A \cup B$
2. $A B$
3. $\bar{A}=\left(\Sigma^{\star}-A\right)$
4. $A \cap B$
5. $h(A)$
6. $g^{-1}(A)$

Proof: (1,2): Let $\mathcal{L}(e)=A, \mathcal{L}(f)=B$.
Thus $\mathcal{L}(e \cup f)=A \cup B ; \mathcal{L}(e \circ f)=A B$
(3): Let $\mathcal{L}(D)=A$, DFA $D=(Q, \Sigma, \delta, s, F)$.

Let $\bar{D}=(Q, \Sigma, \delta, s, Q-F)$.
Thus $\mathcal{L}(\bar{D})=\bar{A}$
(4): $A \cap B=\overline{\bar{A} \cup \bar{B}}$
(5): Let $A=\mathcal{L}(e)$.

Thus $h(A)=\mathcal{L}(h(e))$.
Example:

$$
\begin{aligned}
g(a) & =a, \quad g(b)=c b c \\
A & =\mathcal{L}\left(a^{\star}\left(b a^{\star} b a^{\star}\right)^{\star}\right) \\
g(A) & =\mathcal{L}\left(a^{\star}\left(c b c a^{\star} c b c a^{\star}\right)^{\star}\right)
\end{aligned}
$$

(6): Let $A=\mathcal{L}(D)$, DFA, $D=(Q, \Sigma, \delta, s, F)$.

Let $D^{\prime}=\left(Q, \Gamma, \delta^{\prime}, s, F\right)$.

$$
\delta^{\prime}(q, \gamma)=\delta^{\star}(q, h(\gamma))
$$

Example:

$$
h(0)=a a, \quad h(1)=b, \quad h(2)=a b a, \quad h(3)=\epsilon
$$

