CMPSCI 601: Recall From Last Time L ecture 2

Definitions:
e An alphabet is a non-empty finite set, e.g., > = {0, 1},
etc.

e The set of regular expressions R(X) over alphabet
>,

e A language is regular iff it is denoted by some regular
expression.

e ADFAisatuple, D = (Q,%,9,s, F).
e AnNFA isatuple, N = (Q,>, A, s, F).

Prop 1.2: Every NFA N can be translated into an
NFA, N’, which has the same number of states but no
e-transitions, s.t. L(N) = L(N').



Proposition 1.3: Forevery NFA, IV, with n states, there
Isa DFA, D, with at most 2" states s.t. £L(D) = L(N).

Proof: Let N = (Q,>, A, q, F'). By Proposition 1.2
may assume that V has no ¢ transitions.

Let D = (@(Q)v 27 57 {QO}v F,)

§(S,a) = U A(r,a)

resS
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Claim: For all w € >*,

0"{@},w) = Aqo,w)
By induction on |w|:
jw| =0:0"({qo},€) = {20} = A™(qo,€)

lw| =k +1: w = ua.

Inductively, 6*({qo},u) = A*(qo, u)

0*({qo}, ua) = 6(6"({qo}, u), a)

= U  A(r,a)
r€5*({QO}7u)

= U Ar,a)

TEA*((](%U)

= A*(q, ua)

Therefore, £L(D) = L(N).



Theorem 1.4 (Kleene’s Th) Let A C >* be any lan-
guage. Then the following are equivalent:

1. A= L(D), for some DFA D.

2. A= L(N), for some NFA N wo e transitions
3. A= L(N), for some NFA N.

4. A = L(e), for some regular expression e.

5. Alis regular.

Proof: Obvious that 1 — 2 — 3.

3 — 2 by Prop. 1.2.

2 — 1 by Prop. 1.3 (subset construction).
4 <+ 5 by def of regular

4 — 3. We show by induction on the number of symbols
In the regular expression ¢, that there is an NFA N with
L(e) = L(N):

e=a e= ¢ e= 0
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Union Concatenation

L(N)=L(Nq) +L(Ny L(N) =L(Nyg) L(N,

Ny
%

Kleene Star

L(N) = (L(N )Y . O~
1




34 LetN={1,...,n},S,AL,EF), F={f1,...,f}

Li; = {w | j € A%(4,w); no intermediate state # > k}

L ={a|jeAGa)} U {e]i=j}

i

Lz.j = L,L-j U L¢k+1(Lk+1k+1) Lk+1,j

k
L k+1 k+1



Let A C >* be any language.

Define the right-equivalence relation ~ 4 on >*:

rr~ay & (VwedX) (zwe A & ywe A

x ~4 y Iff x and y cannot be distinguished by concate-
nating some string w to the right of each of them and
testing for membership in A.



Example: A; = {w € {a,b}* | #(w) =0(mod2)}
€ ~4, G ~4, GG b ~ ab ~ bbb

Claim: x ~y, yiff #5(x) = #(y) (mod 2).
Proof: Suppose z ~4, y. Letw =e.

Tw =1 € Ay <y yw =1y € Ay

Thus, #4(z) = #4(y) (mod 2).

Suppose,  #4(z) = #4(y) (mod 2).
(Yw)#s(zw) = #p(yw) (mod 2) .

(Vw)(zw € A7 <  yw € Ay)

Thus, z ~4, y.

ulo, = {weX | u~ygw}
la] = {w € {a,b}" | #s(w)
b] = {w € {a,b}" | #(w)

0(mod2)}
1 (mod2)}



Exercise: Show that for any language A, ~4 IS an
equivalence relation. Recall that an equivalence relation
IS a binary relation that is reflexive, symmetric, and tran-
Sitive.

Proof: Reflexive: (Vo € ¥*)(x ~4 )
Let z, w € X* be arbitrary.

(zw € A < zwe A)

Vw € X)(zw € A <+ zw € A) because w was
arbitrary.

I ~YpA T

(Vx € ¥*)(x ~4 x) because = was arbitrary.



Symmetric: (Vx,y € X*)(x ~4y = Yy ~a )
Let z, y, € X* be arbitrary.
Suppose x ~4 v.

(Vw)(zw € A < yw € A)
(Vw)(yw € A < zw € A)
Yym~a
T~AY 7Y ~AX

Ve, y e X)(x ~ay = y ~aT)
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Transitive:
Vz,y,z € 5)(x ~ay Ny ~a2) = &~y 2)

Let z,y, z € X* be arbitrary.
SUppose x ~A4 Yy Ay ~4 2.

(Vw)(zw € A < yw € A)
(Vw)(yw € A + 2w € A)
Let w € >* be arbitrary.

(zw € A < yw € A)
(yw € A < zw € A)

(zw € A < zw e A)

Vw € YY) (zw € A <+ 2w € A) because w was
arbitrary.

I ~Yp R

(X ~AYANY ~a2) > T ~og2

(Va,y,z € X)(x ~4a Yy ANy ~4 2) = x ~4 2z because
x, 1y, z Were arbitrary.
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CMPSCI 601: Some Proof Methods L ecture 2

e To prove (Vx)y: let x be arbitrary, prove ¢, conclude
(V).

e To prove ¢ — 1) assume ¢, prove v, conclude ¢ —
.

e From ¢ A vy may conclude ¢, .

e From ¢, 1y may conclude ¢ A .

e TO prove . assume —p, prove A A - A, conclude .
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Myhill-Nerode Theorem: The language A is regular
Iff ~4 has a finite number of equivalence classes. Fur-
thermore, this number of equivalence classes is equal to
the number of states in the minimum-state DFA that ac-

cepts A.

Proof: Suppose A = L(D) for some DFA,
D={q,q - @}, 5 0,q,F)

LetS; = A{w | d(q1,w) =g}

Claim:  Each S; contained in single ~ 4 equivalence
class.

Letx,y € S;, w € X* be arbitrary.

0"(q1, xw) = 6"(8"(q1, ), w) = 6°(8"(q1, ), w) = 0"(q1, yw)
LD) = A{z|d(q,z2) € F;

zw €A & 0 (q,zw) € F < (q,yw) € F < ywe A

(Vw)(zw € A > yw € A)

T ~YAY
Thus, there are at most n equivalence classes!
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Conversely, suppose that there are finitely many equiva-
lence classes of ~4: E4, ..., E,,.

Let [x] be the equivalence class that x is in.
Define D = ({F4,...,E}, 2,0, €], F') where

F = {[] | = €A}
0([z],a) = [zdq]
Must show that o is well defined, 1.e.,
(z] =) = (lza|=lya])
Suppose x ~ 4 v.

(Vw)(zw € A > yw € A)

(Vw)(zaw € A < yaw € A)

Thus, xa ~4 ya.
Claim: §*([e], x) = |z].

Proof: Dby induction on |x| [exercise].

r € L(D) < 6(e,z) e F < [zg]e F < z€ A
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Example: Prove that the following language is regular
and its minimal DFA has seven states:

Ar = {fwe {0,1,...,9Y | Tlw)

D; = ({0,1,...,6},%,67,0,{0})
07(q,d) = (10g+d)mod7 = (3¢+d)mod?7
Must show £(D7) = A7 [exercise]; and,
(Vi 75 €4{0,1,...,6})( %4, J)

Leti £ j € {0,1,...,6} be arbitrary.

Pick d st. 3i +d = 0(mod7). Suppose 35 + d =
0 (mod 7).

3i+d = 3j+d (mod7)
3t = 37 (mod 7)
15¢ = 155 (mod 7)
i = 7 (mod?7)
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ThUS,iOdEA7,j0d¢A7,i7éA7j.
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Example: Show E = {a"b" | n € N} is not regular.

pf. Leti = 5 € N be arbitrary.
We will show that a* 7 o’
Let w = b'

a'w € E; dw ¢ FE

Thus ~ has infinitely many equivalence classes.
Thus by the Myhill-Nerode Theorem, E' is not regular.
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A language homomorphism is a function A : ¥>* — I™
S.t.

(Vo,y € ) (h(zy) = h(z)h(y)) (2.0)
Examples:

h:{0,1,2,3} — {a,b}*
h(0) = aa, h(1) = b, h(2) = aba, h(3) =€
h(012310) = aabababaa

g:{a,b} — {a,b,c}
gla)=a,  g(b) = chc
g(baa) = cbcaa

Notation: forfunctionf: A — B,setsS C A,T C B,
f(S) = {f(a) |a€ S}y fU(T) = {acA| fla) €T}

Example:
Ay = {w € {a,b}" | #p(w) =0(mod2)}

ht(A) = {we{0,1,2,3} | #1(w)+ #2(w) = 0(mod?2)}
g(A1) = {w € {a,b,c}* | #4. = 0(mod?2); no other b or c}
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Closure Theorem for Regular Sets: Let A, B C X* be
regular languages and let h : >* - I™and g : I — X*
be homomorphisms. Then the following languages are
regular:

1. AUB

2. AB

3. A= (T — A)
4, ANB

5. h(A)

6. g7(A)

Proof: (1,2): LetL(e) = A, L(f) = B.
Thus L(eU f) = AUB; L(eo f) = AB

3): Let £(D) = A, DFA D = (Q, %, 4, s, F).
Let D = (Q,%,8,s,Q — F).
Thus £L(D) = A

4): ANB=4AUB
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(5): Let A = L(e).
Thus h(A) = L(h(e)).

Example:

g(a) = a, g(b) = cbc
A = L(a*(ba*ba™))
g(A) = L(a*(cbca*cbca™)*)
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(6): Let A = £(D),DFA, D = (Q, %, 4, s, F).
Let D' = (Q, 1,4, s, F).

q,v) = (g, h(v))

22



