CMPSCI 601:

Recall From Last Time

Lecture 19

Finite Model Theory / Descriptive Complexity:

Th: FO
$$\subseteq$$
 L = **DSPACE**[log n]

Fagin's Th: $NP = SO\exists$.

$$\mathcal{A} \models \Phi \quad \Leftrightarrow \quad N(\operatorname{bin}(\mathcal{A})) = 1$$

$$\Phi = (\exists C_0^{2k} \cdots C_{g-1}^{2k} \Delta^k) (\forall \bar{x}) \psi$$

 ψ is quantifier-free.

	Space						
	0	1	$ar{S}$	n-1	n	$n^{k} - 1$	Δ
Time 0	$\langle q_0,w_0 angle$	w_1	• • •	w_{n-1}	<u> </u>	Ц	δ_0
1	w_0	$\langle q_1, w_1 angle$	• • •	w_{n-1}	□		δ_1
	:	•	•		•		:
$ar{t}$			$a_{-1} a_0 a_1$				δ_t
$\bar{t}+1$			b				δ_{t+1}
	:	•	•		•		:
$n^{k} - 1$	$\mid \langle q_f, 1 angle$	Ц	• • •		□		

Accepting computation of N on input $w_0w_1\cdots w_{n-1}$

Theorem 19.1 [Cook-Levin Theorem]

SAT is **NP**-complete.

Proof: Let $B \in \mathbf{NP}$ be arbitrary. By Fagin's theorem,

$$B = \{ \mathcal{A} \mid \mathcal{A} \models \Phi \}$$

$$\Phi = (\exists C_0^{2k} \cdots C_{g-1}^{2k} \Delta^k) (\forall x_1 \cdots x_t) \psi(\bar{x})$$

with ψ quantifier-free and CNF: $\psi(\bar{x}) = \bigwedge_{j=1}^r T_j(\bar{x})$ with each T_j a disjunction of literals.

For all
$$\mathcal{A}$$
, have: $\mathcal{A} \in B \iff \mathcal{A} \models \Phi$

Want:
$$\mathcal{A} \in B \quad \Leftrightarrow \quad \varphi(\mathcal{A}) \in SAT$$

Let \mathcal{A} be arbitrary, $n = \|\mathcal{A}\|$

Wanted:
$$A \in B \Leftrightarrow \varphi(A) \in SAT$$

Define: formula $\varphi(A)$ as follows:

boolean variables:
$$C_i(e_1,\ldots,e_{2k}), \Delta(e_1,\ldots,e_k), i = 0,\ldots,g-1, e_1,\ldots,e_{2k} \in |\mathcal{A}|$$

clauses:
$$T_j'(\bar{e}), j = 1, \ldots, r, \quad \bar{e} \in |\mathcal{A}|^t$$

 $T_i'(\bar{e})$ is $T_j(\bar{e})$ with the following replacements:

$$R(x_i,x_j)\mapsto \mathbf{if}\ (\langle e_i,e_j
angle\in R^{\mathcal{A}})\ \mathbf{then}\ (\mathbf{true})\ \mathbf{else}\ (\mathbf{false})$$
 $x_i=x_j\mapsto \mathbf{if}\ (e_1=e_j)\ \mathbf{then}\ (\mathbf{true})\ \mathbf{else}\ (\mathbf{false})$
 $x_i\leq x_j\mapsto \mathbf{if}\ (e_1\leq e_j)\ \mathbf{then}\ (\mathbf{true})\ \mathbf{else}\ (\mathbf{false})$
 $C_i(x_{i_1},\ldots x_{i_{2k}})\mapsto C_i(e_{i_1},\ldots e_{i_{2k}})$
 $\Delta(x_{i_1},\ldots x_{i_k})\mapsto \Delta(e_{i_1},\ldots e_{i_k})$

$$\Phi\ \equiv\ (\exists C_0^{2k}\cdots C_{g-1}^{2k}\Delta^k)(\forall x_1\cdots x_t)\ \bigwedge_{i=1}^r T_j(\bar{x})$$

$$\mathcal{A} \in B \qquad \Leftrightarrow \qquad \mathcal{A} \models \Phi \qquad \Leftrightarrow \qquad \varphi(\mathcal{A}) \in \mathsf{SAT} \spadesuit$$

Proposition 19.2

$$3\text{-SAT} = \{\varphi \in \text{CNF-SAT} \mid \varphi \text{ has } \leq 3 \text{ literals per clause}\}$$

3-SAT is **NP**-complete.

Proof: Show SAT \leq 3-SAT.

Example:

$$C = (\ell_1 \vee \ell_2 \vee \cdots \vee \ell_7)$$

$$C' \equiv (\ell_1 \vee \ell_2 \vee d_1) \wedge (\overline{d_1} \vee \ell_3 \vee d_2) \wedge (\overline{d_2} \vee \ell_4 \vee d_3) \wedge (\overline{d_3} \vee \ell_5 \vee d_4) \wedge (\overline{d_4} \vee \ell_6 \vee \ell_7)$$

Claim:
$$C \in SAT \Leftrightarrow C' \in 3-SAT$$

In general do this construction for each clause independently.

$$\varphi \in SAT \qquad \Leftrightarrow \qquad \varphi' \in 3\text{-SAT} \qquad \spadesuit$$

What about reducing 3-SAT to SAT?

Can we do it?

Easily! The *identity function* serves as a reduction, because every 3-SAT instance is also a SAT instance with the same answer. This is an example of the general phenomenon of one problem being *a special case* of another. Another example was on HW#5, where LEVELLED-REACH was a special case of REACH and so clearly LEVELLED-REACH \leq REACH.

But what does it prove to reduce 3-SAT to SAT?

Not much – only the fact that 3-SAT is in **NP** or that LEVELLED-REACH is in **NL**, neither of which was hard to prove anyway. To prove that a special case of a general problem is complete for some class, we have two options:

- 1. Reduce the general problem to the specific one, or
- 2. Show that the completeness proof for the general case can be adapted to always yield an instance of the special case

For example, in HW#5 the first method would be to follow my hint and reduce REACH to LEVELLED-REACH directly. The second method would be to show that when we map an arbitrary **NL** problem to a REACH instance, we can get a LEVELLED-REACH instance. (This happens if the TM in question keeps a clock on its worktape, for example.)

Proposition 19.3 3-COLOR is NP-complete.

Proof: Show $3\text{-SAT} \leq 3\text{-COLOR}$.

$$\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_t \in 3\text{-CNF}$$

$$VAR(\varphi) = \{x_1, x_2, \dots, x_n\}$$

Must build graph $G(\varphi)$ s.t.

$$\varphi \in 3\text{-SAT} \Leftrightarrow G(\varphi) \in 3\text{-COLOR}$$

Working assumption: 3-SAT requires $2^{\epsilon n}$ time.

 G_1 encodes clause $C_1 = (\overline{x_1} \lor x_2 \lor \overline{x_3})$

Claim: Triangle a_1, b_1, d_1 serves as an "or"-gate:

 d_1 may be colored "true" iff at least one of its inputs $\overline{x_1}, x_2$ is colored "true". Similarly, the output f_1 may be colored "true" iff at least one of d_1 and the third input, $\overline{x_3}$ is colored "true".

 f_i can only be colored "true".

A three coloring of the literals can be extended to color G_i iff the corresponding truth assignment makes C_i true.

Proposition 19.4 CLIQUE is NP-complete.

Proof:

Show SAT \leq CLIQUE.

$$arphi = C_1 \wedge C_2 \wedge \cdots \wedge C_t \in CNF$$

$$VAR(arphi) = \{x_1, x_2, \dots, x_n\}$$

Must build graph $g(\varphi)$ s.t.

$$arphi \in \mathsf{SAT} \quad \Leftrightarrow \quad g(arphi) \in \mathsf{CLIQUE}$$
 $L \ = \ \{x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n\}; \quad C \ = \ \{c_1, \ldots, c_t\}$

$$egin{aligned} g(arphi) &= (V^{g(arphi)}, E^{g(arphi)}, k^{g(arphi)}) \ V^{g(arphi)} &= (C imes L) \cup \{w_0\} \ E^{g(arphi)} &= \{(\langle c_1, \ell_1 \rangle, \langle c_2, \ell_2 \rangle) \mid c_1
eq c_2 ext{ and } \overline{\ell}_1
eq \ell_2\} \ \cup \ \{(w_0, \langle c, \ell \rangle), (\langle c, \ell \rangle, w_0) \mid \ell ext{ occurs in } c\} \ k^{g(arphi)} &= t+1 \end{aligned}$$

$$k^{g(\varphi)} = t + 1$$

 $\{(w_0, \langle c, \ell \rangle), (\langle c, \ell \rangle, w_0) \mid \ell \text{ occurs in } c\}$

$$egin{aligned} V^{g(arphi)} &= (C imes L) \cup \{w_0\} \ & E^{g(arphi)} &= \{(\langle c_1, \ell_1 \rangle, \langle c_2, \ell_2 \rangle) \mid c_1
eq c_2 ext{ and } \overline{\ell}_1
eq \ell_2\} \ \cup \ & \{(w_0, \langle c, \ell \rangle), (\langle c, \ell \rangle, w_0) \mid \ell ext{ occurs in } c\} \ & k^{g(arphi)} &= t+1 \ & (arphi \in ext{SAT}) \quad \Leftrightarrow \quad (g(arphi) \in ext{CLIQUE}) \end{aligned}$$

Claim: $g \in F(\mathbf{L})$

Proposition 19.5 Subset Sum is NP-Complete.

$$\{m_1,\ldots,m_r,T\in\mathbf{N}\mid(\exists S\subseteq\{1,\ldots,r\})(\sum_{i\in S}m_i=T)\}$$

Show 3-SAT \leq Subset Sum.

$$\varphi \equiv C_1 \wedge C_2 \wedge \cdots \wedge C_t \in 3\text{-CNF}$$

$$VAR(\varphi) = \{x_1, x_2, \dots, x_n\}$$

Build $f \in F(\mathbf{L})$ such that for all φ ,

$$\varphi \in 3\text{-SAT} \qquad \Leftrightarrow \qquad f(\varphi) \in \text{ Subset Sum}$$

	$ x_1 $	x_2		x_n	C_1	C_2		C_t	
\overline{T}	1	1	• • •	1	3	3	• • •	3	
$\overline{x_1}$	1	0	• • •	0	1	0		1	$C_1 = (x_1 \vee \overline{x_2} \vee x_3)$
$\overline{x_1}$	1	0	• • •	0	0	1		0	
x_2	0	1	• • •	0	0	1		1	$C_2 = (\overline{x_1} \vee x_2 \vee x_n)$
$\overline{x_2}$	0	1		0	1	0		0	
:	•	•	• • •	:	:	:	• • •	:	$C_t = (x_1 \vee x_2 \vee \overline{x_n})$
x_n	0	0	• • •	1	0	1		0	
$\overline{x_n}$	0	0	• • •	1	0	0		1	
a_1	0	0		0	1	0		0	
b_1	0	0		0	1	0		0	
a_2	0	0		0	0	1		0	
b_2	0	0	• • •	0	0	1	• • •	0	
:	•	•	• • •	•	:	:	• • •	:	
a_t	0	0		0	0	0		1	
b_t	0	0	• • •	0	0	0	• • •	1	

Knapsack

Given n objects:

object	o_1	o_2	• • •	o_n	
weight	w_1	w_2	• • •	w_n	≥ 0
value	v_1	v_2		v_n	

 $W = \max \text{ weight I can carry in my knapsack.}$

Optimization Problem:

choose $S\subseteq\{1,\ldots,n\}$ to maximize $\sum\limits_{i\in S}v_i$ such that $\sum\limits_{i\in S}w_i\leq W$

Decision Problem:

Given \bar{w}, \bar{v}, W, V , can I get total value $\geq V$ while total weight is $\leq W$?

Proposition 19.6 *Knapsack is* **NP**-*Complete*.

Proof: Let $I = \langle m_1, \dots m_n, T \rangle$ be an instance of Subset Sum.

Problem:
$$(\exists ?S \subseteq \{1,\ldots,n\})(\sum_{i\in S} m_i = T)$$

Let $f(I) = \langle m_1, \dots, m_n, m_1, \dots, m_n, T, T \rangle$ be an instance of Knapsack.

 $\textbf{Claim:} \qquad I \in \text{Subset Sum} \qquad \Leftrightarrow \qquad f(I) \in \text{Knapsack}$

$$(\exists S \subseteq \{1, \dots, n\}) (\sum_{i \in S} m_i = T)$$

$$\Leftrightarrow$$

$$(\exists S \subseteq \{1,\ldots,n\}) (\sum_{i \in S} m_i \geq T \land \sum_{i \in S} m_i \leq T) \spadesuit$$

Fact 19.7 Even though Knapsack is **NP**-Complete there is an efficient dynamic programming algorithm that can closely approximate the maximum possible V.