CMPSCI 601: Recall From Last Time

Lecture 19

Finite Model Theory / Descriptive Complexity:

Th: FO C L = DSPACE]|logn]
Fagin’s Th: NP = SO4.
AE® & N(bin(4) =1

® = (3CF---CH A (VT

Y 1S quantifier-free.
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Theorem 19.1 [Cook-Levin Theorem]

SAT is NP-complete.

Proof: Let B € NP be arbitrary. By Fagin’s theorem,

B ={A| AR}

® = (3CE - O AF) (Ve - )(E)

with ¢ quantifier-free and CNF: ¢ (z) = A T;(7)

with each 77 a disjunction of literals.

Forall A,have: AeB & AE?
Want: AeB <& p(A) e SAT



Let A be arbitrary, n = | A
Wanted: A€ B <& (A € SAT

Define: formula ¢(.A) as follows:

booleanvariables: C(ey,...,ex), Aler, ... ex), @=
0,...,9—1, e1,...,eq €A

clauses: Tj(e),j=1,...,r, €€ |A[

T7(e) is Tj(e) with the followmg replacements:

R(z;,x;) — if ((e;, ¢;) € R4) then (true) else (false)
r; =x; — If (e; =¢;) then (true) else (false)
z; < x; — if (e; < e;) then (true) else (false)

Cz'<x217 cee szk) (621, s e’i2k)
A(ziy,...xi) = Aley, ... €,)
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Proposition 19.2
3-SAT = {p € CNF-SAT | ¢ has < 3 literals per clause}

3-SAT Is NP-complete.

Proof: Show SAT < 3-SAT.

Example:

C = (UiVLV VL)

C'= (U1 VUl Vd) A (di VAV dy) A (dy V Ly V d3) A
(ds V U5 V ds) A (do V Lg V £7)

Claim: C € SAT & C' € 3-SAT

In general do this construction for each clause indepen-
dently.

@ € SAT & ¢ € 3-SAT '



What about reducing 3-SAT to SAT?
Can we do it?

Easily! The identity function serves as a reduction, be-
cause every 3-SAT instance is also a SAT instance with
the same answer. This is an example of the general phe-
nomenon of one problem being a special case of another.
Another example was on HW#5, where LEVELLED-
REACH was a special case of REACH and so clearly
LEVELLED-REACH < REACH.



But what does it prove to reduce 3-SAT to SAT?

Not much — only the fact that 3-SAT is in NP or that
LEVELLED-REACH is in NL, neither of which was hard
to prove anyway. To prove that a special case of a general
problem is complete for some class, we have two options:

1. Reduce the general problem to the specific one, or

2. Show that the completeness proof for the general case
can be adapted to always yield an instance of the spe-
cial case

For example, in HW#5 the first method would be to fol-
low my hint and reduce REACH to LEVELLED-REACH
directly. The second method would be to show that when
we map an arbitrary NL problem to a REACH instance,
we can get a LEVELLED-REACH instance. (This hap-
pens if the TM in question keeps a clock on its worktape,
for example.)



Proposition 19.3 3-COLOR is NP-complete.
Proof: Show 3-SAT < 3-COLOR.

o = O, ANCy A---ANC, € 3CNF

VAR(p) = Az, 29,...,2,}

Must build graph G(¢) s.t.

p€3-SAT <  G(yp) €3-COLOR

Working assumption: 3-SAT requires 2" time.



(1 encodes clause C; = (71 V 22 V T3)

Claim: Triangle a4, b1, d; serves as an “or’-gate:

d; may be colored “true” iff at least one of its inputs
T1, x2 1S colored “true”. Similarly, the output f; may be
colored “true” iff at least one of d; and the third input, =3
IS colored “true”.

f; can only be colored “true”.

A three coloring of the literals can be extended to color
G; Iff the corresponding truth assignment makes C; true.

A



Proposition 19.4 CLIQUE is NP-complete.

Proof:
Show SAT < CLIQUE.

¢ = Ci ANCyN---NC, € CNF

VAR(p) = Az, 29,...,2,}

Must build graph g(¢) s.t.

p€SAT <  g¢(p) € CLIQUE
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V¥ = (C x L) U {w}

EY) = {((c1, 4a), {2, 62)) | e1 # coand &y # £y} U
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V9@ = (C x L) U {wy}

Eg(go) = {(<Cl,€1>, <Cg,£2>) | C1 7£ Co and ?1 3’5 62} U
{(wo, (c,£)), ({c,£),wp) | £occursin c}

B9 = t4+1

(p € SAT) < (g(p) € CLIQUE)

Claim: ¢ € F(L)
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Proposition 19.5 Subset Sum is NP-Complete.
{mi,...,m,, T € N | (HSQ{l,...,r})(_ZSmZ- = T)}
(AS

Show 3-SAT < Subset Sum.

p=C ANCy A~ NC; € 3-CNF
VAR(p) = {z1,22,...,2,}

Build f € F'(L) such that for all ¢,

@ € 3-SAT & f(¢) € Subset Sum
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Knapsack

Given n objects:

object | 01 09 -+ o,
weight | wy wy -+ w, | >0
value | vy v9 --- w,

W = max weight | can carry in my knapsack.

Optimization Problem:
choose S C {1,...,n}
to maximize ¥ v,
€S
suchthat > w; < W
€S
Decision Problem:

Given w, v, W, V, can | get total value > V while total
weight is < W?
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Proposition 19.6 Knapsack is NP-Complete.

Proof: Let I = (m,...m,,T) be an instance of Subset
Sum.

Problem: (3?25 C{1,...,n})(Xm; = T)

1€S

Let f(I) = (my,...my,mq,...,my, T, T) bean instance
of Knapsack.

Claim: I € Subset Sum & f(I) € Knapsack

Fact 19.7 Even though Knapsack is NP-Complete there
Is an efficient dynamic programming algorithm that can
closely approximate the maximum possible V.
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