Finite Model Theory / Descriptive Complexity:

Th: \quad FO $\subseteq \mathbf{L}=\mathbf{D S P A C E}[\log n]$

Fagin's Th: $\quad \mathbf{N P}=\mathrm{SO} \exists$.

$$
\begin{aligned}
\mathcal{A} & =\Phi \quad \Leftrightarrow \quad N(\operatorname{bin}(\mathcal{A}))=1 \\
\Phi & =\left(\exists C_{0}^{2 k} \cdots C_{g-1}^{2 k} \Delta^{k}\right)(\forall \bar{x}) \psi
\end{aligned}
$$

ψ is quantifier-free.

Accepting computation of N on input $w_{0} w_{1} \cdots w_{n-1}$

Theorem 19.1 [Cook-Levin Theorem]

SAT is NP-complete.

Proof: Let $B \in \mathbf{N P}$ be arbitrary. By Fagin's theorem,

$$
\begin{aligned}
B & =\{\mathcal{A} \mid \mathcal{A} \models \Phi\} \\
\Phi & =\left(\exists C_{0}^{2 k} \cdots C_{g-1}^{2 k} \Delta^{k}\right)\left(\forall x_{1} \cdots x_{t}\right) \psi(\bar{x})
\end{aligned}
$$

with ψ quantifier-free and CNF: $\quad \psi(\bar{x})=\bigwedge_{j=1}^{r} T_{j}(\bar{x})$ with each T_{j} a disjunction of literals.

For all \mathcal{A}, have: $\quad \mathcal{A} \in B \quad \Leftrightarrow \quad \mathcal{A} \models \Phi$
Want: $\mathcal{A} \in B \quad \Leftrightarrow \quad \varphi(\mathcal{A}) \in \mathrm{SAT}$

Let \mathcal{A} be arbitrary, $\quad n=\|\mathcal{A}\|$
Wanted: $\mathcal{A} \in B \quad \Leftrightarrow \quad \varphi(\mathcal{A}) \in$ SAT
Define: formula $\varphi(\mathcal{A})$ as follows:
boolean variables: $C_{i}\left(e_{1}, \ldots, e_{2 k}\right), \Delta\left(e_{1}, \ldots, e_{k}\right), \quad i=$ $0, \ldots, g-1, \quad e_{1}, \ldots, e_{2 k} \in|\mathcal{A}|$
clauses: $\quad T_{j}^{\prime}(\bar{e}), j=1, \ldots, r, \quad \bar{e} \in|\mathcal{A}|^{t}$
$T_{j}^{\prime}(\bar{e})$ is $T_{j}(\bar{e})$ with the following replacements:

$$
\begin{aligned}
& R\left(x_{i}, x_{j}\right) \mapsto \text { if }\left(\left\langle e_{i}, e_{j}\right\rangle \in R^{\mathcal{A}}\right) \text { then (true) else (false) } \\
& x_{i}=x_{j} \mapsto \text { if }\left(e_{1}=e_{j}\right) \text { then (true) else (false) } \\
& x_{i} \leq x_{j} \mapsto \text { if }\left(e_{1} \leq e_{j}\right) \text { then (true) else (false) } \\
& C_{i}\left(x_{i_{1}}, \ldots x_{i_{2 k}}\right) \mapsto C_{i}\left(e_{i_{1}}, \ldots e_{i_{2 k}}\right) \\
& \Delta\left(x_{i_{1}}, \ldots x_{i_{k}}\right) \mapsto \Delta\left(e_{i_{1}}, \ldots e_{i_{k}}\right) \\
& \Phi \equiv\left(\exists C_{0}^{2 k} \cdots C_{g-1}^{2 k} \Delta^{k}\right)\left(\forall x_{1} \cdots x_{t}\right) \wedge_{j=1}^{r} T_{j}(\bar{x}) \\
& \varphi(\mathcal{A}) \equiv \\
& \mathcal{A} \in B \quad \sum_{e_{1}, \ldots, e_{t} \in|\mathcal{A}|}^{\wedge} \wedge_{j=1}^{r} T_{j}^{\prime}(\bar{e}) \\
& \quad \Leftrightarrow \quad \mathcal{A} \models \Phi \quad \Leftrightarrow \quad \varphi(\mathcal{A}) \in \operatorname{SAT} \Phi
\end{aligned}
$$

Proposition 19.2

3-SAT $=\{\varphi \in \mathrm{CNF}-\mathrm{SAT} \mid \varphi$ has ≤ 3 literals per clause $\}$
3-SAT is NP-complete.

Proof: Show SAT ≤ 3-SAT.

Example:

$$
C=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{7}\right)
$$

$$
\begin{gathered}
C^{\prime} \equiv\left(\ell_{1} \vee \ell_{2} \vee d_{1}\right) \wedge\left(\overline{d_{1}} \vee \ell_{3} \vee d_{2}\right) \wedge\left(\overline{d_{2}} \vee \ell_{4} \vee d_{3}\right) \wedge \\
\left(\overline{d_{3}} \vee \ell_{5} \vee d_{4}\right) \wedge\left(\overline{d_{4}} \vee \ell_{6} \vee \ell_{7}\right)
\end{gathered}
$$

Claim: $\quad C \in \mathrm{SAT} \quad \Leftrightarrow \quad C^{\prime} \in 3$-SAT
In general do this construction for each clause independently.

$$
\varphi \in \mathrm{SAT} \quad \Leftrightarrow \quad \varphi^{\prime} \in 3 \text {-SAT }
$$

What about reducing 3-SAT to SAT?

Can we do it?

Easily! The identity function serves as a reduction, because every 3-SAT instance is also a SAT instance with the same answer. This is an example of the general phenomenon of one problem being a special case of another. Another example was on HW\#5, where LEVELLEDREACH was a special case of REACH and so clearly LEVELLED-REACH \leq REACH.

But what does it prove to reduce 3-SAT to SAT?

Not much - only the fact that 3-SAT is in NP or that LEVELLED-REACH is in NL, neither of which was hard to prove anyway. To prove that a special case of a general problem is complete for some class, we have two options:

1. Reduce the general problem to the specific one, or
2. Show that the completeness proof for the general case can be adapted to always yield an instance of the special case

For example, in HW\#5 the first method would be to follow my hint and reduce REACH to LEVELLED-REACH directly. The second method would be to show that when we map an arbitrary NL problem to a REACH instance, we can get a LEVELLED-REACH instance. (This happens if the TM in question keeps a clock on its worktape, for example.)

Proposition 19.3 3-COLOR is NP-complete.
Proof: Show 3-SAT ≤ 3-COLOR.

$$
\begin{aligned}
\varphi= & C_{1} \wedge C_{2} \wedge \cdots \wedge C_{t} \in 3-\mathrm{CNF} \\
& \operatorname{VAR}(\varphi)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
\end{aligned}
$$

Must build graph $G(\varphi)$ s.t.

$$
\varphi \in 3 \text {-SAT } \quad \Leftrightarrow \quad G(\varphi) \in 3 \text {-COLOR }
$$

Working assumption: 3-SAT requires $2^{\epsilon n}$ time.

G_{1} encodes clause $C_{1}=\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)$
Claim: Triangle a_{1}, b_{1}, d_{1} serves as an "or"-gate:
d_{1} may be colored "true" iff at least one of its inputs $\overline{x_{1}}, x_{2}$ is colored "true". Similarly, the output f_{1} may be colored "true" iff at least one of d_{1} and the third input, $\overline{x_{3}}$ is colored "true".
f_{i} can only be colored "true".
A three coloring of the literals can be extended to color G_{i} iff the corresponding truth assignment makes C_{i} true.

Proposition 19.4 CLIQUE is NP-complete.

Proof:

Show SAT \leq CLIQUE.

$$
\begin{aligned}
\varphi= & C_{1} \wedge C_{2} \wedge \cdots \wedge C_{t} \in \mathrm{CNF} \\
& \operatorname{VAR}(\varphi)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
\end{aligned}
$$

Must build graph $g(\varphi)$ st.

$$
\begin{aligned}
& \varphi \in \mathrm{SAT} \quad \Leftrightarrow \quad g(\varphi) \in \mathrm{CLIQUE} \\
& L=\left\{x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right\} ; \quad C=\left\{c_{1}, \ldots, c_{t}\right\} \\
& g(\varphi)=\left(V^{g(\varphi)}, E^{g(\varphi)}, k^{g(\varphi)}\right) \\
& V^{g(\varphi)}=(C \times L) \cup\left\{w_{0}\right\} \\
& E^{g(\varphi)}=\left\{\left(\left\langle c_{1}, \ell_{1}\right\rangle,\left\langle c_{2}, \ell_{2}\right\rangle\right) \mid c_{1} \neq c_{2} \text { and } \bar{\ell}_{1} \neq \ell_{2}\right\} \cup \\
&\left\{\left(w_{0},\langle c, \ell\rangle\right),\left(\langle c, \ell\rangle, w_{0}\right) \mid \ell \text { occurs in } c\right\} \\
& k^{g(\varphi)}= t+1
\end{aligned}
$$

C_{1}
C_{2}

$$
\begin{array}{r}
\mathrm{x}_{1} \overline{\mathrm{x}_{1}} \quad \mathrm{x}_{2} \overline{\mathrm{x}}_{2} \quad \mathrm{x}_{\mathrm{n}} \overline{\overline{\mathrm{x}}_{\mathrm{n}}} \\
\\
\\
g(\varphi), \quad C_{1}=\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{n}}\right)
\end{array}
$$

$$
V^{g(\varphi)}=(C \times L) \cup\left\{w_{0}\right\}
$$

$$
E^{g(\varphi)}=\left\{\left(\left\langle c_{1}, \ell_{1}\right\rangle,\left\langle c_{2}, \ell_{2}\right\rangle\right) \mid c_{1} \neq c_{2} \text { and } \bar{\ell}_{1} \neq \ell_{2}\right\} \cup
$$

$$
\left\{\left(w_{0},\langle c, \ell\rangle\right),\left(\langle c, \ell\rangle, w_{0}\right) \mid \ell \text { occurs in } c\right\}
$$

$$
k^{g(\varphi)}=t+1
$$

$$
\begin{aligned}
& V^{g(\varphi)}=(C \times L) \cup\left\{w_{0}\right\} \\
& E^{g(\varphi)}=\left\{\left(\left\langle c_{1}, \ell_{1}\right\rangle,\left\langle c_{2}, \ell_{2}\right\rangle\right) \mid c_{1} \neq c_{2} \text { and } \bar{\ell}_{1} \neq \ell_{2}\right\} \cup \\
&\left\{\left(w_{0},\langle c, \ell\rangle\right),\left(\langle c, \ell\rangle, w_{0}\right) \mid \ell \text { occurs in } c\right\} \\
& k^{g(\varphi)}= t+1 \\
&(\varphi \in \mathrm{SAT}) \Leftrightarrow(g(\varphi) \in \mathrm{CLIQUE})
\end{aligned}
$$

Claim: $\quad g \in F(\mathbf{L})$

Proposition 19.5 Subset Sum is NP-Complete.

$$
\left\{m_{1}, \ldots, m_{r}, T \in \mathbf{N} \mid(\exists S \subseteq\{1, \ldots, r\})\left(\sum_{i \in S} m_{i}=T\right)\right\}
$$

Show 3-SAT \leq Subset Sum.

$$
\begin{aligned}
\varphi & \equiv C_{1} \wedge C_{2} \wedge \cdots \wedge C_{t} \in \quad 3-\mathrm{CNF} \\
\operatorname{VAR}(\varphi) & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
\end{aligned}
$$

Build $f \in F(\mathbf{L})$ such that for all φ,

$$
\varphi \in 3 \text {-SAT } \quad \Leftrightarrow \quad f(\varphi) \in \text { Subset Sum }
$$

		x_{2}	..	${ }_{n}$	C_{1}	C_{2}	...	C_{t}		
T		1	\ldots	1	3	3	\ldots	3		
x_{1}		0	\cdots	0	1	0	\ldots	1		$C_{1}=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$
$\overline{x_{1}}$		0	...	0	0	1	\ldots	0		
x_{2}		1	\ldots	0	0	1	...	1		$C_{2}=\left(\overline{x_{1}} \vee x_{2} \vee x_{n}\right)$
$\overline{x_{2}}$		1	\ldots	0	1	0	...	0		
:		:	\ldots		:	:	..			$C_{t}=\left(x_{1} \vee x_{2} \vee \overline{x_{n}}\right)$
x_{n}		0	...	1	0	1	...	0		
$\overline{x_{n}}$		0	...	1	0	0	...	1		
a_{1}		0	...	0	1	0	..	0		
b_{1}		0	...	0	1	0	...	0		
a_{2}		0	\ldots	0	0	1	...	0		
b_{2}		0	\ldots	0	0	1	.	0		
:		:			:	:	..			
a_{t}		0	\ldots	0	0	0	..			
b_{t}		0	...	0	0	0	..			

Knapsack

Given n objects:

object	o_{1}	o_{2}	\cdots	o_{n}	
weight	w_{1}	w_{2}	\cdots	w_{n}	≥ 0
value	v_{1}	v_{2}	\cdots	v_{n}	

$W=$ max weight I can carry in my knapsack.
Optimization Problem:
choose $S \subseteq\{1, \ldots, n\}$
to maximize $\sum_{i \in S} v_{i}$
such that $\sum_{i \in S} w_{i} \leq W$

Decision Problem:

Given \bar{w}, \bar{v}, W, V, can I get total value $\geq V$ while total weight is $\leq W$?

Proposition 19.6 Knapsack is NP-Complete.

Proof: Let $I=\left\langle m_{1}, \ldots m_{n}, T\right\rangle$ be an instance of Subset Sum.

Problem: $(\exists ? S \subseteq\{1, \ldots, n\})\left(\sum_{i \in S} m_{i}=T\right)$
Let $f(I)=\left\langle m_{1}, \ldots m_{n}, m_{1}, \ldots, m_{n}, T, T\right\rangle$ be an instance of Knapsack.

Claim: $\quad I \in$ Subset Sum $\quad \Leftrightarrow \quad f(I) \in$ Knapsack

$$
(\exists S \subseteq\{1, \ldots, n\})\left(\sum_{i \in S} m_{i}=T\right)
$$

$$
\Leftrightarrow
$$

$(\exists S \subseteq\{1, \ldots, n\})\left(\sum_{i \in S} m_{i} \geq T \wedge \sum_{i \in S} m_{i} \leq T\right)$

Fact 19.7 Even though Knapsack is NP-Complete there is an efficient dynamic programming algorithm that can closely approximate the maximum possible V.

